初中数学第七章 相交线与平行线综合与测试同步测试题
展开
这是一份初中数学第七章 相交线与平行线综合与测试同步测试题,共23页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°2、如图,∠1=∠2,∠3=25°,则∠4等于( )A.165° B.155° C.145° D.135°3、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个4、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )A.30° B.40° C.50° D.60°5、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°6、如图,∠1=∠2,则下列结论正确的是( )A.AD∥BC B.AB∥CDC.AD∥EF D.EF∥BC7、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )A.①② B.②③ C.③④ D.②③④8、如图,①,②,③,④可以判定的条件有( ).A.①②④ B.①②③ C.②③④ D.①②③④9、下列说法正确的是( )A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线10、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )A.15° B.20° C.25° D.30°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线,相交于点,,则__°.2、如图,把一条两边边沿互相平行的纸带折叠,若,则_______.3、两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知) ,所以∠1=_____(两直线平行,内错角相等) . 4、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.5、如图,当直线AB与CD相交于O点,∠AOD=______时,那么AB与CD垂直,记作:AB______CD.符号语言:因为∠AOD=90°(已知) ,所以AB⊥CD( ) .三、解答题(5小题,每小题10分,共计50分)1、对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为 °;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE;①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).2、(1)探究:如图1,ABCDEF,试说明.(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).3、如图,,试说明.证明:∵(己知),∴(___________________),∴____________(同位角相等,两直线平行),∵(已知),∴(___________________),∴(___________________),∴(两直线平行,同位角相等).4、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1= .又因为∠1 = ∠3 (已知),所以∠2 = (等量代换).所以BC ( ),所以∠B + ∠BDE = 180°(___________________).5、如图,AD//BC,的平分线交于点,交的延长线于点,.求证:.请将下面的证明过程补充完整:证明:∵AD//BC, (理由: ).平分, ..,, (理由: ).(理由: ). -参考答案-一、单选题1、A【解析】【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、B【解析】【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:∠1=∠2,,,.故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.3、B【解析】【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵,∴∠BOD=180°-150°=30°,∴故③正确;若为的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定,∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.4、B【解析】【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.5、A【解析】【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.6、C【解析】略7、B【解析】【分析】根据平行线的判定逐个判断即可.【详解】①∠1=∠2,②∠3=∠4,③ADBE, ∠D=∠B,④∠DCE=∠D,能推出ABDC的条件为②③故选B【点睛】本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.8、A【解析】【分析】根据平行线的判定定理逐个排查即可.【详解】解:①由于∠1和∠3是同位角,则①可判定;②由于∠2和∠3是内错角,则②可判定;③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;④①由于∠2和∠5是同旁内角,则④可判定;即①②④可判定.故选A.【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.9、B【解析】【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.10、B【解析】【分析】若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.【详解】解: ∵∠1=120°,∴∠3=180°-120°=60°.∵∠2=40°,∴要使b∥c,则∠2=∠3,∴直线b绕点A逆时针旋转60°-40°=20°.故选B.【点睛】本题考查直线与平行线相交的性质,掌握这些性质是本题关键.二、填空题1、62【解析】【分析】先求出∠DOB的值,然后根据对顶角相等求解即可.【详解】解:,,,,故答案为62.【点睛】本题考查了角的和差,对顶角相等,正确识图是解答本题的关键.2、62°##62度【解析】【分析】如图,根据平行线的性质可得,根据折叠的性质可得,再利用平角等于180°,据此求解即可.【详解】解:∵纸片两边平行,∴由折叠的性质可知,,∴,∴=62°.故答案为:62°.【点睛】本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点.3、 相等 ∠2【解析】略4、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.5、 90° ⊥ 垂直的定义【解析】略三、解答题1、 (1)60(2)①∠B=75°,②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.【解析】【分析】(1)设∠H的4系补周角的度数为x°,根据新定义列出方程求解便可;(2)①过E作EF∥AB,得∠B+∠D=∠BED,再由已知∠D=60°,∠B是∠E的3系补周角,列出∠B的方程,求得∠B便可;②根据k系补周角的定义先确定P点的位置,再结合∠ABF=n∠ABE,∠CDF=n∠CDE求解k与n的关系即可求解.(1)解:设∠H的4系补周角的度数为x°,根据新定义得,120+4x=360,解得,x=60,∠H的4系补周角的度数为60°,故答案为:60;(2)解:①过E作EF∥AB,如图1,∴∠B=∠BEF,∵AB∥CD,∴EF∥CD,∠D=60°,∴∠D=∠DEF=60°,∵∠B+60°=∠BEF+∠DEF,即∠B+60°=∠BED,∵∠B是∠BED的3系补周角,∴∠BED=360°-3∠B,∴∠B+60°=360°-3∠B,∴∠B=75°;②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,理解题意是解题的关键.2、(1)见解析;(2)60°;(3)70或290【解析】【分析】(1)由可得,,,则;(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.【详解】解:(1)如图1,,,,,.(2)由(1)中探究可知,,,且,,;(3)如图,当为钝角时,由(1)中结论可知,,;当为锐角时,如图,由(1)中结论可知,,即,综上,或.故答案为:70或290.【点睛】本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.3、垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【解析】【分析】根据垂直定义求出∠B=∠CDF=90°,根据平行线的判定得出AB∥EF,EF∥CD,即可得出答案.【详解】证明:∵(己知),∴(垂直定义),∴ABCD(同位角相等,两直线平行),∵(已知),∴(内错角相等,两直线平行),∴(平行于同一条直线的两条直线平行),∴(两直线平行,同位角相等).故答案为:垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【点睛】本题考查了平行线的判定的应用,能正确运用判定定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,④平行于同一直线的两直线平行.4、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【解析】【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.5、;两直线平行,内错角相等;;;;;同位角相等,两直线平行;两直线平行,同旁内角互补.【解析】【分析】根据平行线的性质与判定,角平分线的意义,补全证明过程即可.【详解】(理由:两直线平行,内错角相等),平分,,.,,(理由:同位角相等,两直线平行).(理由:两直线平行,同旁内角互补).【点睛】本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试测试题,共22页。试卷主要包含了下列命题中,是假命题的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共21页。试卷主要包含了下列语句正确的个数是,下列说法错误的是,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共22页。试卷主要包含了下列说法中正确的有,下列命题中,是真命题的是等内容,欢迎下载使用。