


初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练,共30页。试卷主要包含了在下列说法中,能确定位置的是,点P的坐标为,如果点P,点关于轴对称的点的坐标是等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
2、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )
A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
4、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、在下列说法中,能确定位置的是( )
A.禅城区季华五路 B.中山公园与火车站之间
C.距离祖庙300米 D.金马影剧院大厅5排21号
6、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b=( )
A.﹣1 B.1 C.﹣5 D.5
8、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)
9、点关于轴对称的点的坐标是( )
A. B. C. D.
10、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、平面直角坐标系中,点P(-2,-5)到x轴距离是____.
2、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
3、在平面直角坐标系中,点关于原点的对称点坐标为_______.
4、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则a-b=________.
5、若点与点关于原点对称,则的值为______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).
(1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;
(2)作出ABC关于点O的中心对称图形A2B2C2;
(3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.
2、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.
(1)点的坐标是______;
(2)画出关于轴对称的,其中点、、的对应点分别为点、、;
(3)直接写出的面积为______.
3、已知:如图,在平面直角坐标系中.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );
(2)直接写出△ABC的面积为 ;
(3)在x轴上画点P,使PA+PC最小.
4、(探索发现)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、B分别是y轴、x轴上两个动点, 直角边 AC 交x轴于点D,斜边BC交y轴于点E
(1)如图1,已知C点的横坐标为﹣1,请直接写出点A的坐标
(2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
(拓展应用)
(3)如图3,若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、 AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为
5、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:
(1)△ABC的面积为 ;
(2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;
(3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹)
6、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2;
(3)求出(2)中△A2BC2的面积.
7、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.
8、如图,在平面直角坐标系中,已知△ABC.
(1)将△ABC向下平移6个单位,得,画出;
(2)画出△ABC关于y轴的对称图形;
(3)连接,并直接写出△A1A2C2的面积.
9、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).
(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;
(2)画出△ABC关于原点O的对称图形△A2B2C2;
(3)直接写出下列点的坐标:A1 ,B2 .
10、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.
(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.
(2)求使△APO为等腰三角形的点P的坐标.
-参考答案-
一、单选题
1、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
2、B
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
3、C
【分析】
点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
【详解】
∵P点到x、y轴的距离分别是4、3,
∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
∵点P在第二象限内,
∴点P的坐标为(-3,4),
故选:C.
【点睛】
本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
4、C
【分析】
根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.
【详解】
∵点A的坐标为(1,3),点是点A关于x轴的对称点,
∴点的坐标为(1,-3).
∵点是将点向左平移2个单位长度得到的点,
∴点的坐标为(-1,-3),
∴点所在的象限是第三象限.
故选C.
【点睛】
本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.
5、D
【分析】
根据确定位置的方法逐一判处即可.
【详解】
解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
C、距离祖庙300米,有距离但没有方向,故不符合题意;
D、金马影剧院大厅5排21号,确定了位置,故符合题意.
故选:D
【点睛】
本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
6、B
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
7、B
【分析】
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.
【详解】
解:∵点P(﹣2,b)和点Q(a,﹣3),
又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴a=﹣2,b=3.
∴a+b=1,
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.
8、D
【分析】
根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
【详解】
解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
故选:D.
【点睛】
此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
9、B
【分析】
根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.
【详解】
解:∵点A的坐标为(-2,-3),
∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).
故选:B.
【点睛】
本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.
10、C
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
【详解】
解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是4,
∴点P的坐标为(-3,4).
故选C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
二、填空题
1、5
【分析】
根据点到x轴的距离等于纵坐标的绝对值解答即可.
【详解】
解:点P(-2,-5)到x轴的距离是5.
故答案为:5.
【点睛】
本题考查了点到坐标轴的距离,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.
2、或
【分析】
根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
【详解】
解:∵点,,且ABx轴,
∴y=2,
∵点到轴的距离是到轴距离的2倍,
∴,
∴,
∴B(-4,2)或(4,2).
故答案为(-4,2)或(4,2).
【点睛】
本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
3、(-4,7)
【分析】
根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),进而得出答案.
【详解】
解:点关于原点的对称点坐标为(-4,7),
故答案是:(-4,7).
【点睛】
此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
4、-1
【分析】
直接利用关于原点对称点的性质得出a,b的值,进而得出答案.
【详解】
解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
∴a=﹣4,b=-3,
则a-b=-4+3=-1.
故答案为:﹣1.
【点睛】
此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.
5、-4
【分析】
根据关于原点对称的点的横坐标和纵坐标都互为相反数解答.
【详解】
解:由点与点关于原点对称,
可得n=1,,
∴
故答案为:﹣4.
【点睛】
本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数.
三、解答题
1、(1)见解析;(2)见解析;(3)
【分析】
(1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
(2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;
(3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得
【详解】
(1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
(2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;
(3)
【点睛】
本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.
2、(1);(2)见解析;(3)12
【分析】
(1)根据平面直角坐标系写出点的坐标即可;
(2)找到点关于轴对称的对应点,顺次连接,则即为所求;
(3)根据正方形的面积减去三个三角形的面积即可求得的面积
【详解】
(1)根据平面直角坐标系可得的坐标为,
故答案为:
(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;
(3)的面积为
故答案为:
【点睛】
本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.
3、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
【分析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
【详解】
解:(1)如图所示:△A1B1C1即为所求,
A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
故答案为:5;
(3)如图所示:点P即为所求.
【点睛】
本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
4、(1)A(0,1);(2)见解析;(3)不变,2
【分析】
(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△BAO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
(2)过点C作CG⊥AC交y轴于点G,则△ACG≌△BAD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
(3)BP的长度不变,理由如下:如图(3),过点C作CH⊥y轴于点H,构建全等三角形:△CBH≌△BAO(AAS),结合全等三角形的对应边相等推知:CH=BO,BH=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPH≌△DPB,故BP=HP=2.
【详解】
解:(1)如图(1),过点C作CF⊥y轴于点F,
∵CF⊥y轴于点F,
∴∠CFA=90°,∠ACF+∠CAF=90°,
∵∠CAB=90°,
∴∠CAF+∠BAO=90°,
∴∠ACF=∠BAO,
在△ACF和△ABO中,
,
∴△ACF≌△BAO(AAS),
∴CF=OA=1,
∴A(0,1);
(2)如图2,过点C作CG⊥AC交y轴于点G,
∵CG⊥AC,
∴∠ACG=90°,∠CAG+∠AGC=90°,
∵∠AOD=90°,
∴∠ADO+∠DAO=90°,
∴∠AGC=∠ADO,
在△ACG和△ABD中,,
∴△ACG≌△BAD(AAS),
∴CG=AD=CD,∠ADB=∠AGC,
∵∠ACB=45°,∠ACG=90°,
∴∠DCE=∠GCE=45°,
在△DCE和△GCE中,,
∴△DCE≌△GCE(SAS),
∴∠CDE=∠AGC,
∴∠ADB=∠CDE;
(3)BP的长度不变,理由如下:
如图,过点C作CH⊥y轴于点H.
∵∠ABC=90°,
∴∠CBH+∠ABO=90°.
∵∠BAO+∠ABO=90°,
∴∠CBH=∠BAO.
∵∠CHB=∠AOB=90°,AB=AC,
∴△CBH≌△BAO(AAS),
∴CH=BO,BH=AO=4.
∵BD=BO,
∴CH=BD.
∵∠CHP=∠DBP=90°,∠CPE=∠DPB,
∴△CPH≌△DPB(AAS),
∴BP=HP=2.
故答案为:2.
【点睛】
本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
5、(1)5;(2)见解析;(3)见解析
【分析】
(1)利用“补全矩形法”求解△ABC的面积;
(2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;
(3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.
【详解】
解:(1)如图所示:
S△ABC=3×4-×2×2-×2×3-×4×1=5.
(2)如图所示:
(3)如图所示:
【点睛】
本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.
6、(1)见解析,(﹣2,4);(2)见解析;(3)3.5
【分析】
(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.
【详解】
解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);
(2)如图,△A2BC2为所作;
(3)△A2BC2的面积=3×3﹣×3×1﹣×2×1﹣×3×2=3.5.
【点睛】
本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.
7、图见解析,面积为2
【分析】
先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.
【详解】
解:∵的顶点坐标分别为,绕点顺时针旋转,得到,
∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),
∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),
∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),
在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),
顺次连结A1B1, B1C1,C1A1,
则△A1B1C1为所求;
,
=,
=,
=2.
【点睛】
本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.
8、(1)见解析;(2)见解析;(3)见解析,7
【分析】
(1)依据平移的方向和距离,即可得到;
(2)依据轴对称的性质,即可得到;
(3)依据割补法进行计算,即可得到△A1A2C2的面积.
【详解】
(1)如图所示,即为所求;
(2)如图所示,即为所求;
(3)如图所示,△A1A2C2即为所求作的三角形,
△A1A2C2的面积=3×6-×2×3-×2×6-×1×4
=18-3-6-2
=7.
【点睛】
本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
9、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)
【分析】
(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;
(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;
(3)根据(1)(2)说画图形求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)如图所示,即为所求;
(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),
故答案为:(-3,-2);(3,-1).
【点睛】
本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.
10、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)
【分析】
(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;
(2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.
【详解】
解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,
(2)如图,设P点坐标为(t,0),
,
当OP=OA时,P点坐标为或;
当AP=AO时,P点坐标为(4,0),
当PO=PA时,P点坐标为(2,0),
综上所述,P点坐标为或或(4,0)或(2,0).
【点睛】
本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共28页。试卷主要包含了在平面直角坐标系xOy中,点A,在平面直角坐标系中,点P,根据下列表述,能确定位置的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共31页。试卷主要包含了在平面直角坐标系xOy中,点A,已知A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共29页。试卷主要包含了在下列说法中,能确定位置的是,在平面直角坐标系中,点P等内容,欢迎下载使用。
