


初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共29页。试卷主要包含了在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)2、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、根据下列表述,能确定位置的是( )A.光明剧院8排 B.毕节市麻园路C.北偏东40° D.东经116.16°,北纬36.39°4、在平面直角坐标系中,点关于x轴对称的点的坐标是( )A. B. C. D.5、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)6、在平面直角坐标系中,若点与点关于原点对称,则点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,每个小正方形的边长为1,在阴影区域的点是( ) A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)8、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)9、已知点A(x+2,x﹣3)在y轴上,则x的值为( )A.﹣2 B.3 C.0 D.﹣310、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )A.﹣1 B.0 C.1 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点到轴的距离为______,到轴的距离为______.2、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.3、线段AB=5,AB平行于x轴,A在B左边,若A点坐标为(-1,3),则B点坐标为_____.4、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.5、已知点A(1,3)和B(1,-3),则点A,B关于________对称.三、解答题(10小题,每小题5分,共计50分)1、如图(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?(2)如何确定敌方战舰B的位置?2、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;(2)画出△ABC关于原点O的对称图形△A2B2C2;(3)直接写出下列点的坐标:A1 ,B2 .3、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;4、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.(2)求使△APO为等腰三角形的点P的坐标.5、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2;(3)求出(2)中△A2BC2的面积.6、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.(1)画出将关于点对称的图形;(2)写出点、、的坐标.7、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;(2)作出△ABC关于y轴对称的△A'B'C';(3)连接BB',AA'.求四边形AA'B'B的面积.8、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,(1)求的度数;(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.9、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1), (1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1 ; (3)画出△ABC绕点C旋转180°后得到的△A2B2C2.10、如图,在平面直角坐标系中,的三个顶点均在格点上.(1)在网格中作出关于轴对称的图形;(2)直接写出以下各点的坐标:________,________,________;(3)网格的单位长度为1.则________. -参考答案-一、单选题1、C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.2、B【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.3、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:.光明剧院8排,没有明确具体位置,故此选项不合题意;.毕节市麻园路,不能确定位置,故此选项不合题意;.北偏东,没有明确具体位置,故此选项不合题意;.东经,北纬,能确具体位置,故此选项符合题意;故选:D.【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.4、C【分析】根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解【详解】解:点关于x轴对称的点的坐标是 故选:C【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.5、C【分析】关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.6、B【分析】根据点(x,y)关于原点对称的点的坐标为(﹣x,﹣y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答.【详解】解:∵点与关于原点对称,∴m=-2,m-n=﹣3,∴n=1,∴点M(-2,1)在第二象限,故选:B.【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.7、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.故选:C.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.8、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是4,∴点P的坐标为(-3,4).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.9、A【分析】根据y轴上点的横坐标为0列方程求解即可.【详解】解:∵点A(x+2,x﹣3)在y轴上,∴x+2=0,解得x=-2.故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.10、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.二、填空题1、5 2 【分析】根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.【详解】解:点到轴的距离为,到轴的距离为2.故答案为:5;2【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.2、(2021,0)【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.【详解】∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得∴A1点坐标为(2,0)又∵A2为A1点绕O点顺时针旋转90°所得∴A2点坐标为(0,-2)又∵A3为A2点绕C点顺时针旋转90°所得∴A3点坐标为(-3,1)又∵A4为A3点绕A点顺时针旋转90°所得∴A4点坐标为(1,5)由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.∵2021÷4=505…1故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得故A2021点坐标为(2021,0).故答案为:(2021,0).【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.3、(4,3)【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.【详解】解:∵AB∥x轴,A点坐标为(-1,3),∴点B的纵坐标为3,当A在B左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.4、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.【详解】解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,∴m=﹣2021,n=2020,∴m+n=﹣1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.5、x轴【分析】根据点坐标关于轴对称的变换规律即可得.【详解】解:点坐标关于轴对称的变换规律:横坐标相同,纵坐标互为相反数.点A(1,3)和B(1,-3),的横坐标相同,纵坐标互为相反数,点关于轴对称,故答案为:轴.【点睛】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.三、解答题1、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.【分析】(1)根据图中的位置与方向即可确定.(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.【详解】(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.【点睛】本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.2、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)【分析】(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;(3)根据(1)(2)说画图形求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,即为所求;(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),故答案为:(-3,-2);(3,-1).【点睛】本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.3、见解析【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键4、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)【分析】(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;(2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.【详解】解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,(2)如图,设P点坐标为(t,0),,当OP=OA时,P点坐标为或;当AP=AO时,P点坐标为(4,0),当PO=PA时,P点坐标为(2,0),综上所述,P点坐标为或或(4,0)或(2,0).【点睛】本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.5、(1)见解析,(﹣2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.【详解】解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);(2)如图,△A2BC2为所作;(3)△A2BC2的面积=3×3﹣×3×1﹣×2×1﹣×3×2=3.5.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.6、(1)见解析;(2),,.【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2),,.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.7、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;(2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;(3)根据梯形面积公式即可求四边形AA'B'B的面积.【详解】解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);(2)△A'B'C'即为所求;(3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);∴四边形AA'B'B的面积为: = (2+6)×4=16.【点睛】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.8、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,,, ,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, ,, ,综上所述:(3)如图,过点作,连接,设,,则, 是等腰直角三角形在和中,是等腰直角三角形中,,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.9、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析【分析】(1)根据 A,B 的位置写出坐标即可;(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.【详解】(1)由题意 A(-1,2),B(-3,1).(2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,∵A(-1,2),B(-3,1).C(0,-1),∴A1(1,2),B1(3,1),C1(0,-1),在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,如图△A1B1C1即为所求.(3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,∵A(-1,2),B(-3,1).C(0,-1),∴A2、B2、C2的横坐标分别为1,3,0,纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,∴A2(1,-4)、B2(3,-3)、C2(0,-1),在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,如图△A2B2C2即为所求.【点睛】本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.10、(1)见解析;(2);; ;(3)5【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(3,4),B1(5,2),C1(2,0).故答案为:(3,4),(5,2),(2,0);(3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,故答案为:5.【点睛】本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.
相关试卷
这是一份2020-2021学年第十五章 平面直角坐标系综合与测试同步测试题,共27页。试卷主要包含了在平面直角坐标系中,点在,已知点M,直角坐标系中,点A与点B关于,已知点A,点M等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共27页。试卷主要包含了在平面直角坐标系中,点,点关于轴对称的点的坐标是,点M等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试随堂练习题,共30页。试卷主要包含了点M,已知点A象限等内容,欢迎下载使用。
