![2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题测试练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12711717/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题测试练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12711717/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题测试练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12711717/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共29页。试卷主要包含了在下列说法中,能确定位置的是,在平面直角坐标系中,点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是( )A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)2、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )A. B. C. D.3、点M(3,2)关于y轴的对称点的坐标为( )A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(1,2)4、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).A. B. C. D.5、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号6、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )A.(1,-2) B.(2,1) C.(-2,1) D.(2,-1)8、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.9、点向上平移2个单位后与点关于y轴对称,则( ).A.1 B. C. D.10、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点与点关于原点对称,则a-b的值为________.2、如图,有一个英文单词,它的各个字母的位置依次是,,,,,所对应的字母,如对应的字母是,则这个英文单词为_____.3、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.4、若点M(,a)关于y轴的对称点是点N(b,),则=________.5、(1)把点P(2,-3)向右平移2个单位长度到达点,则点的坐标是_______.(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_______.(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,则点的坐标是_______.三、解答题(10小题,每小题5分,共计50分)1、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).(1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;(2)作出ABC关于点O的中心对称图形A2B2C2;(3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.2、如图,三个顶点的坐标分别是.(1)请画出关于x轴对称的图形;(2)求的面积;(3)在x轴上求一点P,使周长最小,请画出,并通过画图求出P点的坐标.3、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.4、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是 ;(2)若AC=3,BC=4,AB=5,求点C的坐标.5、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;(3)请计算出的面积.6、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;(2)画出△ABC关于原点O的对称图形△A2B2C2;(3)直接写出下列点的坐标:A1 ,B2 .7、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).(1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1.(2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 .8、如图,在平面直角坐标系中,三个顶点的坐标为、、.(1)在图中作出关于轴的对称图形;(2)请直接写出点的坐标___________;(3)在轴上画出一点使的值最小.9、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.(1)请写出△ABC各点的坐标A B C ;(2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,(3)求△ABC 的面积10、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)△ABC的面积是 ;(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 . -参考答案-一、单选题1、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.【详解】解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).故选:B.【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.2、A【分析】由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点P作PM⊥OD于点M,∵长方形的顶点的坐标分别为,点是的中点,∴点D(5,0)∵,PM⊥OD,∴OM=DM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.3、A【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点(3,2)关于y轴的对称点的坐标是(-3,2).故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4、A【分析】画出旋转平移后的图形即可解决问题.【详解】解:旋转,平移后的图形如图所示,,故选:A【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.5、D【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.6、B【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.7、D【分析】先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.【详解】解:点在第四象限,点的横坐标为正数,纵坐标为负数,点到轴的距离为1,到轴的距离为2,点的纵坐标为,横坐标为2,即,故选:D.【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.8、B【分析】根据有序数对的性质解答.【详解】解:能准确表示上海市地理位置的是东经,北纬,故选:B.【点睛】此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.9、D【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点 ,∵点与点关于y轴对称,∴ , ,∴ ,∴,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.10、C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题1、5【分析】直接利用关于原点对称点的性质得出a,b的值,代入求解即可.【详解】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴,,∴,故答案为:5.【点睛】本题考查了关于原点对称点的性质及求代数式的值,正确得出a,b的值是解题的关键.2、【分析】根据题目所给坐标,得出相应位置的字母,即可得出代表的英文单词.【详解】解:对应的字母为,对应的字母为,对应的字母为,对应的字母为,对应的字母为,对应的字母为,这个英文单词为:,故答案为:.【点睛】本题考查了平面直角坐标系,能准确根据所给的坐标得出点的位置是解本题的关键.3、(,)(答案不唯一) 7 【分析】根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可【详解】建立如下坐标系,如图,则点如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:故答案为:(3,1);7【点睛】本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.4、1【分析】直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案.【详解】解:∵点M(,a)关于y轴的对称点是点N(b,),∴b=-,a=,则=1.故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键.5、 (4,-3) (-2,-6) (-2,7) 【分析】(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可.【详解】解:(1)∵把点P(2,-3)向右平移2个单位长度到达点,∴横坐标加2,纵坐标不变,∴点的坐标是(4,-3);(2)∵把点A(-2,-3)向下平移3个单位长度到达点B,∴横坐标不变,纵坐标减3,∴点B的坐标是(-2,-6);(3)∵把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,∴横坐标减4,纵坐标加4,∴点的坐标是(-2,7).故答案为:(4,-3);(-2,-6);(-2,7).【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.三、解答题1、(1)见解析;(2)见解析;(3)【分析】(1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得【详解】(1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)【点睛】本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.2、(1)见解析;(2)3.5;(3)图形见解析,P点的坐标为【分析】(1)找到关于轴对称的点,顺次连接,则即为所求;(2)根据网格的特点,根据即可求得的面积;(3)连接,与轴交于点,根据对称性即可求得,点即为所求.【详解】解:(1)找到关于轴对称的点,顺次连接,则即为所求,如图(2)(3)根据作图可知,P点的坐标为【点睛】本题考查了画轴对称图形,坐标与图形,轴对称的性质求线段和的最小值,掌握轴对称的性质是解题的关键.3、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.4、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=∠ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OC⊥AB,∠ACB=90°.∴∠ABC+∠BCO=∠ACO+∠BCO=90°,∴∠ABC=∠ACO;故答案为:∠ACO;(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==,∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.5、(1)见解析;(2)(-a,b);(3)2【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;(2)根据(1)中规律即可得出答案;(3)用割补法可求△ABC的面积.【详解】解:(1)△A1B1C1如图所示:(2)∵D点的坐标为(a,b),∴D1点的坐标为(-a,b);(3).【点睛】本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y轴对称点的性质:纵坐标相同,横坐标互为相反数.6、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)【分析】(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;(3)根据(1)(2)说画图形求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,即为所求;(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),故答案为:(-3,-2);(3,-1).【点睛】本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.7、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).故答案为:(4,1).【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.8、(1)见解析;(2);(3)见解析【分析】(1)根据题意得:点、、关于轴的对称的的对应点分别为、、,再顺次连接,即可求解;(2)根据和关于轴的对称图形,即可求解;(3)作点 关于 轴的对称点 ,连接 交 轴于点 ,根据点 与 关于轴对称,可得,即可求解.【详解】解:根据题意得:点、、关于轴的对称的的对应点分别为、、,画出图形,如图所示:(2)点的坐标为;(3)如图,作点关于 轴的对称点 ,连接 交 轴于点 ,则点即为所求,∵点 与 关于轴对称,∴ ,∴,即当点 三点共线时,的值最小.【点睛】本题主要考查了坐标与图形,图形变换——轴对称,线段最短问题,熟练掌握若两点关于y轴对称,则横坐标互为相反数,纵坐标不变;若两点关于x轴对称,则横坐标不变,纵坐标互为相反数;两点间线段最短是解题的关键.9、(1);(2)见解析;(3)7【分析】(1)根据平面直角坐标系直接写出点的坐标即可;(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)根据长方形减去三个三角形的面积即可求得△ABC 的面积【详解】(1)根据平面直角坐标系可得故答案为:(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)的面积等于【点睛】本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.10、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵S△ACD=S△ABC,AC=AC∴即D点的纵坐标为4或-4又∵D点在y轴上故D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
相关试卷
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共27页。试卷主要包含了一只跳蚤在第一象限及x轴,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共31页。试卷主要包含了在平面直角坐标系xOy中,点A,已知A等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题,共26页。试卷主要包含了在平面直角坐标系xOy中,点A,已知点A,点在第四象限,则点在第几象限,直角坐标系中,点A与点B关于,点A个单位长度.等内容,欢迎下载使用。