初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共33页。试卷主要包含了如图,在中,AD,如图,ABC≌DEF,点B等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为( )
A.8 B.10 C.11 D.12
2、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B
3、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
4、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )
A.8 B.10 C.20 D.40
5、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
A.2 B.3 C.4 D.7
6、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
A.65° B.80° C.115° D.50°
7、如图,,点E在线段AB上,,则的度数为( )
A.20° B.25° C.30° D.40°
8、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
A. B. C. D.
9、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
10、下列三角形与下图全等的三角形是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,,,,,则点的坐标为__________.
2、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________
3、如图,上午9时,一艘船从小岛A处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是______海里.
4、已知a,b,c是的三边长,满足,c为奇数,则______.
5、如图,是等腰直角三角形,AB是斜边,以BC为一边在右侧作等边三角形BCD,连接AD与BC交于点E,则的度数为______度.
三、解答题(10小题,每小题5分,共计50分)
1、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.
(1)若∠BAC=40°,求∠E的度数;
(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
2、命题:如图,已知,共线,(1),那么.
(1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
(2)根据你选择的条件,判定的方法是________;
(3)根据你选择的条件,完成的证明.
3、如图,点A,B,C,D在一条直线上,,,.
(1)求证:.
(2)若,,求∠F的度数.
4、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
5、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.
(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.
6、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
7、如图,点D在AC上,BC,DE交于点F,,,.
(1)求证:;
(2)若,求∠CDE的度数.
8、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.
(1)求证:;
(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
①依题意补全图形;
②判断的形状,并证明你的结论.
9、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
10、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.
-参考答案-
一、单选题
1、B
【分析】
证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
【详解】
解:∵△GFH为等边三角形,
∴FH=GH,∠FHG=60°,
∴∠AHF+∠GHC=120°,
∵△ABC为等边三角形,
∴AB=BC=AC=5,∠ACB=∠A=60°,
∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
∠HGC=180°-∠C-∠GHC =120°-∠GHC,
∴∠AHF=∠HGC,
在△AFH和△CHG中
,
∴△AFH≌△CHG(AAS),
∴AF=CH.
∵△BDE和△FGH是两个全等的等边三角形,
∴BE=FH,
∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
=(BD+DF+AF)+(CE+BE),
=AB+BC=10.
故选:B.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
2、C
【详解】
由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
【分析】
解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE,
∴2∠DFE=180°﹣∠FGC,
故选:C.
【点睛】
本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
3、C
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
4、C
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
5、B
【分析】
根据全等三角形的性质可得,根据即可求得答案.
【详解】
解:ABC≌DEF,
点B、E、C、F在同一直线上,BC=7,EC=4,
故选B
【点睛】
本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
6、C
【分析】
根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
【详解】
解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠CBD=∠ABC,∠ECB=∠ACB,
∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.
故选:C
【点睛】
本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
7、C
【分析】
根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
【详解】
解:∵,
∴BC=CE,∠ACB=∠DCE,
∴∠B=∠BEC,∠ACD=∠BCE,
∵,
∴∠ACD=∠BCE=180°-2×75°=30°,
故选:C.
【点睛】
本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
8、C
【分析】
根据三角形的三边关系可得,再解不等式可得答案.
【详解】
解:设三角形的第三边为,由题意可得:
,
即,
故选:C.
【点睛】
本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
9、C
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
10、C
【分析】
根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
【详解】
由题可知,第三个内角的度数为,
A.只有两边,故不能判断三角形全等,故此选项错误;
B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
故选:C.
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
二、填空题
1、
【分析】
按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标.
【详解】
解:如下图所示:
由,可知:,.
当B点在x轴下方时,过点B1向x轴作垂线,垂足为E.
,
在与中:
,
点坐标为
当B点在x轴上方时,过点B2向x轴作垂线,垂足为D.
由题意可知:
在与中
,
点坐标为
故答案为:或.
【点睛】
本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.
2、1
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答.
【详解】
解:∵点E是AD的中点,
∴S△ABE=S△ABD,S△ACE=S△ADC,
∴S△ABE+S△ACE=S△ABC=×4=2cm2,
∴S△BCE=S△ABC=×4=2cm2,
∵点F是CE的中点,
∴S△BEF=S△BCE=×2=1cm2.
故答案为:1.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
3、20
【分析】
根据所给的角的度数,容易证得是等腰三角形,而的长易求,所以根据等腰三角形的性质,的值也可以求出.
【详解】
解:据题意得,,,
,
,
,
,
(海里).
故答案是:20.
【点睛】
本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.
4、7
【分析】
绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.
【详解】
解:
,
由三角形三边关系可得
为奇数
故答案为:7.
【点睛】
本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.
5、75
【分析】
由题意,是等腰三角形,然后求出的度数,再根据三角形的外角性质,即可求出的度数.
【详解】
解:∵是等腰直角三角形,
∴AC=BC,∠ABC=∠BAC=45°,∠ACB=90°,
∵△BCD是等边三角形,
∴BC=CD,∠BCD=60°,
∴AC=CD,∠ACD=90°+60°=150°,
∴是等腰三角形,
∴,
∴,
∴;
故答案为:75.
【点睛】
本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出.
三、解答题
1、(1)∠E=35°;(2)AH⊥BE.理由见解析.
【分析】
(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=40°,
∴∠ABC=(180°-∠BAC)=70°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=35°,
∵AE∥BC,
∴∠E=∠CBD=35°;
(2)∵BD平分∠ABC,∠E=∠CBD,
∴∠CBD=∠ABD=∠E,
∴AB=AE,
在△ABD和△AEF中,
,
∴△ABD≌△AEF(SAS),
∴AD=AF,
∵点H是DF的中点,
∴AH⊥BE.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
2、
(1)①
(2)SAS
(3)见解析
【分析】
(1)根据全等三角形的判定方法分析得出答案;
(2)根据(1)直接填写即可;
(3)利用SAS进行证明.
(1)
解:∵,
∴∠A=∠F,
∵AC=EF,
∴当时,可根据SAS证明;
当时,不能证明,
故答案为:①;
(2)
解:当时,可根据SAS证明,
故答案为:SAS;
(3)
证明:在△ABC和△FDE中,
,
∴.
【点睛】
此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.
3、(1)见解析;(2)
【分析】
(1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
(2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
【详解】
(1)证明:
,
即
又,
(2)解:,,
【点睛】
本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.
4、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
5、(1)(2)见解析(3)
【分析】
(1)利用边相等和角相等,直接证明,即可得到结论.
(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
(3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
【详解】
(1)解:
,,
,
在和中,
,
.
(2)解:当点D在线段AC的延长线上时,如下图所示:
,,
,
在和中,
,
,,
.
(3)解:,如下图所示:
,,
,
在和中,
,
,,
.
【点睛】
本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.
6、(1)证明见解析;(2)证明见解析;(3)或
【分析】
(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
【详解】
(1)证明:∵FD⊥AC,
∴∠FDA=90°,
∴∠DFA+∠DAF=90°,
同理,∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,
,
∴△AFD≌△EAC(AAS),
∴DF=AC,
∵AC=BC,
∴FD=BC;
(2)作FD⊥AC于D,
由(1)得,FD=AC=BC,AD=CE,
在△FDG和△BCG中,
,
∴△FDG≌△BCG(AAS),
∴DG=CG=1,
∴AD=2,
∴CE=2,
∵BC=AC=AG+CG=4,
∴E点为BC中点;
(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=7,
∴CG=DG=1.5,
∴AG=CG+AC=5.5,
∴,
同理,当点E在线段BC上时,AG= AC -CG+=2.5,
∴,
故答案为:或.
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
7、
(1)证明见解析;
(2)∠CDE=20°.
【分析】
(1)由“SAS”可证△ABC≌△DBE;
(2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
(1)
证明:∵∠ABD=∠CBE,
∴∠ABD+∠DBC=∠CBE+∠DBC,
即:∠ABC=∠DBE,
在△ABC和△DBE中,
,
∴△ABC≌△DBE(SAS);
(2)
解:由(1)可知:△ABC≌△DBE,
∴∠C=∠E,
∵∠DFB=∠C+∠CDE,
∠DFB=∠E+∠CBE,
∴∠CDE=∠CBE,
∵∠ABD=∠CBE=20°,
∴∠CDE=20°.
【点睛】
本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
8、
(1)证明见解析;
(2)①补全图形见解析;②是等边三角形,证明见解析.
【分析】
(1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
(2)①根据题意补全图形即可;
②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
(1)
∵与都是等边三角形,
∴,,,
∴,即,
在和中,
∴,
∴,
∴.
(2)
①画图如下:
②是等边三角形.
理由如下:∵,
∴,.
∵点M,N分别是AE,BF的中点,
∴,
在和中,
∵,
∴,
∴,,
∴,即,
∴是等边三角形.
【点睛】
本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
9、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
10、85°
【分析】
由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
【详解】
解:∵AD是BC边上的高,
∴∠ADB=∠ADC=90.
在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
∵CE平分∠ACB,
∴∠ECB=∠ACB=35°.
∵∠AEC是△BEC的外角,,
∴∠AEC=∠B+∠ECB=50°+35°=85°.
答:∠AEC的度数是85°.
【点睛】
本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业,共28页。试卷主要包含了下列三个说法等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业,共33页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共35页。