终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向测评试题

    立即下载
    加入资料篮
    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向测评试题第1页
    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向测评试题第2页
    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向测评试题第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共37页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形定向测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、以下长度的三条线段,能组成三角形的是( )
    A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
    2、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )

    A.1个 B.2个 C.3个 D.4个
    3、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
    A. B. C. D.
    4、下列长度的三条线段能组成三角形的是( )
    A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
    5、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )

    A.30° B.40° C.50° D.60°
    6、下列叙述正确的是( )
    A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
    C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
    7、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( )


    A.30° B.20° C.10° D.15°
    8、如图,AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,则∠EDF等于(  ).

    A.α B.90°-α C.90°-α D.180°-2α
    9、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    10、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,,,,,则点的坐标为__________.
    2、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.

    3、如图,,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:
    ①平分;
    ②;
    ③与互余的角有个;
    ④若,则.

    其中正确的是________.(请把正确结论的序号都填上)
    4、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为__________.
    5、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,四边形的对角线、相交于点,已知,.求证:

    (1);
    (2).
    2、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.

    3、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    4、如图,四边形中,,,于点.

    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    5、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
    (1)求∠F的度数;
    (2)若∠ABE=75°,求证:BE∥CF.

    6、命题:如图,已知,共线,(1),那么.

    (1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
    (2)根据你选择的条件,判定的方法是________;
    (3)根据你选择的条件,完成的证明.
    7、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    8、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.

    9、数学课上,王老师布置如下任务:
    如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.
    下面是小路设计的尺规作图过程.
    作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;
    ②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.

    根据小路设计的尺规作图过程,
    (1)使用直尺和圆规,补全图形;(保留作图痕迹)
    (2)完成下面的证明:
    证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= ,( )(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠ ,( )(填推理的依据)
    ∴∠ACB=2∠A.
    10、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.


    -参考答案-
    一、单选题
    1、C
    【分析】
    由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
    【详解】
    解:A、2+3=5,不能组成三角形,不符合题意;
    B、4+4=8,不能组成三角形,不符合题意;
    C、3+4.8>7,能组成三角形,符合题意;
    D、3+5<9,不能组成三角形,不符合题意.
    故选:C.
    【点睛】
    本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
    2、C
    【分析】
    由全等三角形的判定及性质对每个结论推理论证即可.
    【详解】



    又∵,


    故①正确


    由三角形外角的性质有


    故②正确
    作于,于,如图所示:

    则°,
    在和中,,
    ∴,
    ∴,
    在和中,
    ∴,

    ∴平分
    故④正确
    假设平分




    由④知
    又∵为对顶角



    ∴在和中,

    即AB=AC
    又∵
    故假设不符,故不平分
    故③错误.
    综上所述①②④正确,共有3个正确.
    故选:C.
    【点睛】
    本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
    3、D
    【分析】
    设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
    【详解】
    解:设第三根木棒长为x厘米,由题意得:
    8﹣5<x<8+5,即3<x<13,
    故选:D.
    【点睛】
    此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
    4、C
    【分析】
    根据组成三角形的三边关系依次判断即可.
    【详解】
    A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
    B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
    C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
    D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
    5、A
    【分析】
    根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
    【详解】
    ∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
    ∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
    ∵∠PCM是△BCP的外角,
    ∴∠P=∠PCM−∠CBP=50°−20°=30°,
    故选:A.
    【点睛】
    本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
    6、D
    【分析】
    结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
    【详解】
    解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
    三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
    三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
    三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
    故选D
    【点睛】
    本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
    7、B
    【分析】
    利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.
    【详解】
    解:∵AD是∠BAC的平分线,
    ∴∠EAD=∠CAD
    在△ADE和△ADC中,

    ∴△ADE≌△ADC(SAS),
    ∴∠DEA=∠C,
    ∵,∠DEA=∠B +,
    ∴;
    故选:B
    【点睛】
    本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.
    8、B
    【分析】
    AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,有,,,即可求得角度.
    【详解】
    解:由题意知:,


    故选B.
    【点睛】
    本题考查了等腰三角形的性质,几何图形中角度的计算.解题的关键在于确定各角度之间的数量关系.
    9、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    10、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    二、填空题
    1、
    【分析】
    按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标.
    【详解】
    解:如下图所示:

    由,可知:,.
    当B点在x轴下方时,过点B1向x轴作垂线,垂足为E.




    在与中:




    点坐标为
    当B点在x轴上方时,过点B2向x轴作垂线,垂足为D.
    由题意可知:


    在与中




    点坐标为
    故答案为:或.
    【点睛】
    本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.
    2、
    【分析】
    延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
    【详解】
    解:延长AG交BC于D,
    ∵G是三角形的重心,
    ∴AD⊥BC,BD=DC=BC=,
    由勾股定理得,AD=,
    ∴GA=AD=,

    故答案为:.
    【点睛】
    本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    3、①②
    【分析】
    由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.
    【详解】
    ∵BD平分∠GBE
    ∴∠EBD=∠GBD=∠GBE
    ∵BD⊥BC
    ∴∠GBD+∠GBC=∠CBD=90°
    ∴∠DBE+∠ABC=90°
    ∴∠GBC=∠ABC
    ∴BC平分∠ABG
    故①正确
    ∵CB平分∠ACF
    ∴∠ACB=∠GCB
    ∵AE∥CF
    ∴∠ABC=∠GCB
    ∴∠ACB=∠GCB=∠ABC=∠GBC
    ∴AC∥BG
    故②正确
    ∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC
    ∴与∠DBE互余的角共有4个
    故③错误
    ∵AC∥BG,∠A=α
    ∴∠GBE=α

    ∵AE∥CF
    ∴∠BGD=180°-∠GBE=180°−α
    ∴∠BDF=∠GBD+∠BGD=
    故④错误
    即正确的结论有①②
    故答案为:①②
    【点睛】
    本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.
    4、7.5
    【分析】
    根据腰长是否为5,分两类情况进行求解即可.
    【详解】
    解:当腰长为5时,由周长可知:底边长为10,且
    故不满足三边关系,不成立,
    当腰长不为5时,则底边长为5,由周长可得:腰长为
    满足三边关系,故腰长为7.5,
    故答案为:7.5.
    【点睛】
    本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键.
    5、30°
    【分析】
    根据三角形的外角的性质,即可求解.
    【详解】
    解:∵ ,
    ∴ ,
    ∵∠ACD=75°,∠A=45°,
    ∴ .
    故答案为:30°
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    三、解答题
    1、
    (1)证明见解析;
    (2)证明见解析.
    【分析】
    (1)根据全等三角形的判定定理可直接证明;
    (2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.
    (1)
    解:在与中,

    ∴;
    (2)
    由(1)可得:,
    ∴,
    ∵,
    ∴,
    ∴,
    即.
    【点睛】
    题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.
    2、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
    3、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    4、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1





    又,
    ∴△


    ∴四边形是矩形


    (2)在GF上截取GH=GE,连接AH,如图2,











    (3)过点A作于点P,在FC上截取,连接,如图3,

    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    5、(1);(2)证明见详解.

    【分析】
    (1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
    (2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
    【详解】
    解:(1)∵,,,
    ∴,,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∴;
    (2)∵,,
    ∴,
    由(1)可得,
    ∴,
    ∴(内错角相等,两直线平行).
    【点睛】
    题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
    6、
    (1)①
    (2)SAS
    (3)见解析
    【分析】
    (1)根据全等三角形的判定方法分析得出答案;
    (2)根据(1)直接填写即可;
    (3)利用SAS进行证明.
    (1)
    解:∵,
    ∴∠A=∠F,
    ∵AC=EF,
    ∴当时,可根据SAS证明;
    当时,不能证明,
    故答案为:①;
    (2)
    解:当时,可根据SAS证明,
    故答案为:SAS;
    (3)
    证明:在△ABC和△FDE中,

    ∴.
    【点睛】
    此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.
    7、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    8、CM=7.
    【分析】
    根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.
    【详解】
    解:∵∠BAC=∠DAE,
    ∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
    ∴∠BAD=∠CAE,
    在△AEC和△ADB中,

    ∴△AEC≌△ADB(SAS),
    又∵BD=5,
    ∴CE=BD=5,
    ∵AD=AE,AM⊥CD,DE=4,
    ∴,
    ∴CM=CE+EM=5+2=7.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.
    9、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角.
    【分析】
    (1)根据题目中的小路的尺规作图过程,直接作图即可.
    (2)根据垂直平分线的性质以及等边对等角进行解答即可.
    【详解】
    解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;

    (2)解:证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)
    ∴∠ACB=2∠A.
    【点睛】
    本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.
    10、见解析
    【分析】
    根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
    【详解】
    证明:在△AEC与△ADB中,

    ∴△AEC≌△ADB(SAS),
    ∴∠ACE=∠ABD,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠OBC=∠OCB,
    ∴OB=OC.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业,共28页。试卷主要包含了下列三个说法等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共33页。试卷主要包含了如图,在中,AD,如图,ABC≌DEF,点B等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共31页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map