![精品试卷沪教版七年级数学第二学期第十四章三角形同步练习试题01](http://img-preview.51jiaoxi.com/2/3/12709427/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十四章三角形同步练习试题02](http://img-preview.51jiaoxi.com/2/3/12709427/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十四章三角形同步练习试题03](http://img-preview.51jiaoxi.com/2/3/12709427/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第十四章 三角形综合与测试达标测试
展开沪教版七年级数学第二学期第十四章三角形同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列四个命题是真命题的有( )
①同位角相等;
②相等的角是对顶角;
③直角三角形两个锐角互余;
④三个内角相等的三角形是等边三角形.
A.1个 B.2个 C.3个 D.4个
2、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
3、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )
A.5米 B.10米 C.15米 D.20米
4、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
A.65° B.65°或80° C.50°或80° D.50°或65°
5、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
6、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
7、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10° B.20° C.30° D.50°
8、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:
①∠CDF=30°;②∠ADB=50°;
③∠ABD=22°;④∠CBN=108°
其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
9、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
A. B. C. D.
10、下列各条件中,不能作出唯一的的是( )
A.,, B.,,
C.,, D.,,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,△ABC的顶点A、B、C的坐标分别为(0,3)、(4,0)、(0,0),AB=5,点P为x轴上一点,若使得△ABP为等腰三角形,那么点P的坐标除点(,0)外,还可以是_____.
2、如图,点是上的一点,,则下列结论:①;②;③;④,其中成立的有______个.
3、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.
4、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.
5、在等腰△ABC中,∠A=40°,则∠B=_____°.
三、解答题(10小题,每小题5分,共计50分)
1、如图,是的角平分线,于点.
(1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
(2)在(1)中所作的图形中,求证:.
2、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
(1)求证:;
(2)若,求BE的长.
3、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.
(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.
4、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.
(1)求证:△ADE≌△ABC;
(2)求证:AE=CE.
5、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
6、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
7、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
8、如图,点A,B,C,D在一条直线上,,,.
(1)求证:.
(2)若,,求∠F的度数.
9、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.
(1)如图1,求证:AB∥CD;
(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;
(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=∠CDB,求∠GMH的度数.
10、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
(1)如图1,当时,直接写出BC与CE的位置关系;
(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
-参考答案-
一、单选题
1、B
【分析】
利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
【详解】
①两直线平行,同位角相等,故错误,是假命题;
②相等的角是对顶角,错误,是假命题;
③直角三角形两个锐角互余,正确,是真命题;
④三个内角相等的三角形是等边三角形,正确,是真命题,
综上所述真命题有2个,
故选:B.
【点睛】
本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
2、C
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
3、A
【分析】
根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
【详解】
解:连接AB,
根据三角形的三边关系定理得:
15﹣10<AB<15+10,
即:5<AB<25,
∴A、B间的距离在5和25之间,
∴A、B间的距离不可能是5米;
故选:A.
【点睛】
本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
4、D
【分析】
可以是底角,也可以是顶角,分情况讨论即可.
【详解】
当角为底角时,底角就是,
当角为等腰三角形的顶角时,底角为,
因此这个等腰三角形的底角为或.
故选:D.
【点睛】
本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
5、C
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
6、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
7、B
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
8、D
【分析】
根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.
【详解】
解:∵AD∥BC,∠C=30°,
∴∠FDC=∠C=30°,故①正确;
∴∠ADC=180°-∠FDC=180°-30°=150°,
∵∠ADB:∠BDC=1:2,
∴∠BDC=2∠ADB,
∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,
解得∠ADB=50°,故②正确
∵∠EAB=72°,
∴∠DAN=180°-∠EAB=180°-72°=108°,
∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确
∵AD∥BC,
∴∠CBN=∠DAN=108°,故④正确
其中正确说法的个数是4个.
故选择D.
【点睛】
本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.
9、B
【分析】
过点作轴于,由“”可证,可得,,即可求解.
【详解】
解:如图,过点作轴于,
点,
,
是等腰直角三角形,且,
,
,
,
在和中,
,
,
,,
,
,
,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
10、B
【分析】
根据三角形全等的判定及三角形三边关系即可得出结果.
【详解】
解:A、,不能组成三角形;
B、根据不可以确定选项中条件能作出唯一三角形;
C、根据可以确定选项中条件能作出唯一三角形;
D、根据可以确定选项中条件能作出唯一三角形;
故答案为:B.
【点睛】
本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
二、填空题
1、(,0)、(,0)、(9,0)
【分析】
先表示出PB=|a-4|,PB2=a2+9,AB=5,再分三种情况①当PB=AB时.②当PA=PB时,③当PA=AB时,讨论计算即可.
【详解】
设P(a,0),
∵A(0,3),B(4,0),
∴PB=|a-4|,PA2=a2+9,AB=5,
∵△ABP是等腰三角形,
∴①当PB=AB时,
∴|a-4|=5,
∴a=-1或9,
∴P(-1,0)或(9,0),
②当PA=PB时,
∴(a-4)2=a2+9,
∴a=,
∴P(,0),
③当PA=AB时,
∴a2+9=25,
∴a=4(舍)或a=-4,
∴P(-4,0).
即:满足条件的点P的坐标为(-1,0)、(-4,0)、(9,0).
【点睛】
本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键.
2、1
【分析】
根据,得出AC=EB<BC,可判断①;根据,可得∠ADC=∠ECB,得出AD∥BC,根据BC与BE相交,可判断②;根据,得出∠ADC=∠ECB,根据直角三角形两锐角互余得出∠ADC+∠ACD=90°,利用等量代换得出∠ECB+∠ACD=90°可判断③;,得出AD=EC,DC=CB,根据线段和AD+DE=EC+DE=DC=CB>BE,可判断④即可.
【详解】
解:∵点是上的一点,,
∴AC=EB<BC,故①不正确;
∵,
∴∠ADC=∠ECB,
∴AD∥BC,
∵BC与BE相交,故②不正确;
∵,
∴∠ADC=∠ECB,
∵∠ADC+∠ACD=90°,
∴∠ECB+∠ACD=90°即∠ACB=90°,故③正确;
∵,
∴AD=EC,DC=CB,
∴AD+DE=EC+DE=DC=CB>BE,故④不正确;
∴其中成立的有1个.
故答案为1.
【点睛】
本题考查全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定,掌握全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定是解题关键.
3、15
【分析】
根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.
【详解】
解:(1)∵EF⊥FG,BG⊥FG,
∴∠EFA=∠AGB=90°,
∴∠AEF+∠EAF=90°,
又∵AE⊥AB,即∠EAB=90°,
∴∠BAG+∠EAF=90°,
∴∠AEF=∠BAG,
在△AEC和△CDB中,
,
∴△EFA≌△AGB(AAS);
同理可证△BGC≌△CHD(AAS),
∴AG=EF=6,CG=DH=4,
∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.
故答案为:15.
【点睛】
本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.
4、20
【分析】
利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.
【详解】
解:∵EF∥CD,
∴,
∵∠1是△DCB的外角,
∴∠1-∠B=50°-30°=20º,
故答案为:20.
【点睛】
本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.
5、40°或70°或100°
【分析】
本题要分两种情况讨论:当∠A=40°为顶角;当∠A=40°为底角时,则∠B为底角时或顶角.然后求出∠B.
【详解】
分两种情况讨论:
当∠A=40°为顶角时,;
当∠A=40°为底角时,∠B为底角时∠B=∠A=40°;∠B为顶角时∠B=180°−∠A−∠C=180°−40°−40°=100°.
故答案为:40°或70°或100°.
【点睛】
本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.
三、解答题
1、(1)见解析;(2)见解析.
【分析】
(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
【详解】
解:(1)如图,点F、G即为所求作的点;
(2)是的角平分线,,,
【点睛】
本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
2、
(1)见解析
(2)
【分析】
(1)利用是的外角,以及证明即可.
(2)证明≌,可知,从而得出答案.
(1)
证明:∵是的外角,
∴.
又∵,∴.
(2)
解:在和中,
,
∴≌.
∴.
∵,
∴.
【点睛】
本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
3、(1)(2)见解析(3)
【分析】
(1)利用边相等和角相等,直接证明,即可得到结论.
(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
(3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
【详解】
(1)解:
,,
,
在和中,
,
.
(2)解:当点D在线段AC的延长线上时,如下图所示:
,,
,
在和中,
,
,,
.
(3)解:,如下图所示:
,,
,
在和中,
,
,,
.
【点睛】
本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.
4、(1)见解析;(2)见解析
【分析】
(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
【详解】
(1)证明:∵∠1=∠2
∴∠1+=∠2+
即∠DAE=∠BAC
在△ADE和△ABC中
∴△ADE≌△ABC(ASA)
(2)证明:∵△ADE≌△ABC
∴AE=AC
又∵∠2=60°
∴△AEC为等边三角形
∴AE=CE
【点睛】
此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
5、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
6、见解析
【分析】
根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
【详解】
证明:在△AEC与△ADB中,
,
∴△AEC≌△ADB(SAS),
∴∠ACE=∠ABD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
7、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
8、(1)见解析;(2)
【分析】
(1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
(2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
【详解】
(1)证明:
,
即
又,
(2)解:,,
【点睛】
本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.
9、(1)见详解;(2)∠MEB=40°,(3)∠GMH=80°
【分析】
(1)根据等角的补角性质得出∠ABD=∠CDV,根据同位角相等两直线平行可得AB∥CD;
(2)根据AB∥CD;利用内错角相等得出∠ABD=∠RDB,根据BE∥DF,得出∠EBD=∠FDB,利用等量减等量差相等得出∠ABE=∠FDR,根据∠FDR=35°,可得∠ABE=∠FDR=35°即可;
(3)设ME交AB于S,根据MG∥EN,得出∠NES=∠GMS=∠GES,设∠NES=y°,可得∠NEG=∠NES+∠GES=2∠NES=2y°,根据∠EBD=2∠NEG,得出∠EBD =4∠NES=4y°,根据∠EDC=∠CDB,设∠EDC=x°,得出∠CDB=7x°,根据AB∥CD,得出∠GBE+∠EBD+∠CDB=180°,可得35+4y+7x=180根据三角形内角和∠BDE=∠BDC-∠EDC=7x-x=6x,∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,利用EB平分∠DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证ME∥UV,根据MH⊥UV,可求∠SMH=90°,∠SMG=∠NES=10°即可.
【详解】
(1)证明:∵∠ABU+∠ABD=180°,∠ABU+∠CDV=180°.
∴∠ABU=180°-∠ABD,∠CDV=180°-∠ABU,
∴∠ABD=∠CDV,
∴AB∥CD;
(2)解:∵AB∥CD;
∴∠ABD=∠RDB,
∴∠ABE+∠EBD=∠FDB+∠FDR,
∵BE∥DF,
∴∠EBD=∠FDB,
∴∠ABE=∠FDR,
∵∠FDR=35°,
∴∠ABE=∠FDR=35°,
∴∠MEB=∠ABE+5°=35°+5°=40°,
(3)解:设ME交AB于S,
∵MG∥EN,
∴∠NES=∠GMS=∠GES,
设∠NES=y°,
∵∠EBD=2∠NEG
∴∠NEG=∠NES+∠GES=2∠NES=2y°,
∴∠EBD =4∠NES=4y°,
∵∠EDC=∠CDB,
设∠EDC=x°
∴∠CDB=7x°,
∵AB∥CD,
∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,
∴35+4y+7x=180,
∵∠BDE=∠BDC-∠EDC=7x-x=6x,
∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,
∵EB平分∠DEN,
∴∠NEB=∠BED,
∵∠NEB=∠NES+∠SEB=y°+40°,
∴y°+40°=180°-4y°-6x°,
∴,
解得,
∴∠EBD=4y°=40°=∠MEB,
∴ME∥UV,
∵MH⊥UV,
∴MH⊥ME,
∴∠SMH=90°,,
∵∠SMG=∠NES=10°,
∴∠GMH=90°-∠SMG=90°-10°=80°.
【点睛】
本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.
10、
(1)
(2)或,见解析
【分析】
(1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
(2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
(1)
解:,,
∴∠B=∠ACB=45°,
∵,
∴,即∠BAD=∠CAE,
∵,,
∴△BAD≌△CAE,
∴∠ACE=∠B=45°,
∴∠BCE=∠ACB+∠ACE=90°,
∴;
(2)
解:如图,补全图形;
.
证明:∵,
∴.
又∵,,
∴≌.
∴,,.
∵,
∴.
∴.
延长EF到点G,使.
∵,
∴.
∴.
∵,
∴.
∴.
∵,
∴≌.
∴.
∵,
∴.
如图,同理可证.
.
【点睛】
此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题: 这是一份初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题,共34页。试卷主要包含了已知等内容,欢迎下载使用。
初中沪教版 (五四制)第十四章 三角形综合与测试一课一练: 这是一份初中沪教版 (五四制)第十四章 三角形综合与测试一课一练,共30页。试卷主要包含了如图,在中,,如图,直线l1l2,被直线l3等内容,欢迎下载使用。
2021学年第十四章 三角形综合与测试一课一练: 这是一份2021学年第十四章 三角形综合与测试一课一练,共31页。试卷主要包含了下列说法不正确的是,尺规作图等内容,欢迎下载使用。