2021学年第十四章 三角形综合与测试一课一练
展开
这是一份2021学年第十四章 三角形综合与测试一课一练,共31页。试卷主要包含了下列说法不正确的是,尺规作图等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( )
A.30° B.20° C.10° D.15°
2、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )
A.①③④ B.①②③ C.②③④ D.①②③④
3、下列命题是真命题的是( )
A.等腰三角形的角平分线、中线、高线互相重合
B.一个三角形被截成两个三角形,每个三角形的内角和是90度
C.有两个角是60°的三角形是等边三角形
D.在ABC中,,则ABC为直角三角形
4、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
5、下列说法不正确的是( )
A.有两边对应相等的两个直角三角形全等;
B.等边三角形的底角与顶角相等;
C.有一个角是的直角三角形是等腰直角三角形;
D.如果点与点到直线的距离相等,那么点与点关于直线对称.
6、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )
A.SSS B.SAS C.ASA D.AAS
7、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
A. B. C. D.
8、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
9、下列各组线段中,能构成三角形的是( )
A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
10、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为( )
A.15° B.20° C.25° D.30°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.
2、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
3、如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是 ____________.
4、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE______OE(填“>”或“=”或“<”).
5、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
2、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
(1)△AMN是否是等腰三角形?说明理由;
(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
①求证:△BPM是等腰三角形;
②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).
3、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:
已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作图:
(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
请你根据以上材料完成下列问题:
(1)完成下面证明过程(将正确答案写在相应的横线上).
证明:由作图可知,在△O′C′D′和△OCD中,
,
∴△O′C′D′≌ ,
∴∠A′O′B'=∠AOB.
(2)这种作一个角等于已知角的方法依据是 .(填序号)
①AAS;②ASA;③SSS;④SAS
4、如图,AD是的高,CE是的角平分线.若,,求的度数.
5、如图,在中,、分别是上的高和中线,,,求的长.
6、如图,为等边三角形,D是BC中点,,CE是的外角的平分线.
求证:.
7、已知:如图,在△ABC中,AB=3,AC=5.
(1)直接写出BC的取值范围是 .
(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.
8、阅读下面材料:活动1利用折纸作角平分线
①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).
活动2利用折纸求角
如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
解答问题:(1)求的度数;
(2)①图2中,用数字所表示的角,哪些与互为余角?
②写出的一个补角.
解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
(2)①图2中,用数字所表示的角,所有与互余的角是: ;
②的一个补角是 .
9、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
10、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
-参考答案-
一、单选题
1、B
【分析】
利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.
【详解】
解:∵AD是∠BAC的平分线,
∴∠EAD=∠CAD
在△ADE和△ADC中,
,
∴△ADE≌△ADC(SAS),
∴∠DEA=∠C,
∵,∠DEA=∠B +,
∴;
故选:B
【点睛】
本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.
2、A
【分析】
①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
【详解】
解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②由①知:∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,
则∠APO与∠DCO不一定相等,故②不正确;
③∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故③正确;
④如图2,在AC上截取AE=PA,
∵∠PAE=180°﹣∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP,
∴AB=AO+AP,故④正确;
正确的结论有:①③④,
故选:A.
【点睛】
本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
3、C
【分析】
分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.
【详解】
A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;
B.三角形的内角和为180°,故此选项错误;
C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;
D.设,则,故,解得,所以,,此三角形不是直角三角形,故此选项错误.
故选:C.
【点睛】
本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.
4、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
5、D
【分析】
利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.
【详解】
解:A、有两边对应相等的两个直角三角形全等,正确;
B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;
C、有一个角是的直角三角形是等腰直角三角形,正确;
D、当点与点在直线的同侧时,点与点关于直线不对称,错误,
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.
6、A
【分析】
利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
【详解】
解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
所以根据“SSS”可判断△OCD≌△O′C′D′,
所以∠A′OB′=∠AOB.
故选:A.
【点睛】
本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
7、A
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
8、C
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
9、C
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
10、A
【分析】
先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
【详解】
解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
∴∠EFD=60°,∠ABC=45°,
∵BC∥AD,
∴∠EFD=∠FBC=60°,
∴∠ABF=∠FBC-∠ABC=15°,
故选A.
【点睛】
本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
二、填空题
1、6
【分析】
要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.
【详解】
解:作点E关于AD的对称点F,连接CF,
∵△ABC是等边三角形,AD是BC边上的中垂线,
∴点E关于AD的对应点为点F,
∴CF就是EP+CP的最小值.
∵△ABC是等边三角形,E是AC边的中点,
∴F是AB的中点,
∴CF=AD=6,
即EP+CP的最小值为6,
故答案为6.
【点睛】
本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.
2、②
【分析】
根据两边及其夹角对应相等的两个三角形全等,即可求解.
【详解】
解:①若选,是边边角,不能得到形状和大小都确定的;
②若选,是边角边,能得到形状和大小都确定的;
③若选,是边边角,不能得到形状和大小都确定的;
所以乙同学可以选择的条件有②.
故答案为:②
【点睛】
本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
3、∠1=∠2(或填AD=CB)
【分析】
根据题意知,在△ABD与△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.
【详解】
解:∵在△ABD与△CDB中,AB=CD,BD=DB,
∴添加∠1=∠2时,可以根据SAS判定△ABD≌△CDB,
添加AD=CB时,可以根据SSS判定△ABD≌△CDB,,
故答案为∠1=∠2(或填AD=CB).
【点睛】
本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4、=
【分析】
首先由平行线的性质求得∠EDO=∠DOB,然后根据角平分线的定义求得∠EOD=∠DOB,最后根据等腰三角形的判定和性质即可判断.
【详解】
解:∵ED∥OB,
∴∠EDO=∠DOB,
∵D是∠AOB平分线OC上一点,
∴∠EOD=∠DOB,
∴∠EOD=∠EDO,
∴DE=OE,
故答案为:=.
【点睛】
本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得∠EOD=∠EDO是解题的关键.
5、E
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
三、解答题
1、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
2、
(1)△AMN是是等腰三角形;理由见解析;
(2)①证明见解析;②a﹣b.
【分析】
(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
(1)
解:△AMN是是等腰三角形,
理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴△AMN是等腰三角形;
(2)
①证明:∵BP平分∠ABC,
∴∠PBM=∠PBC,
∵MN∥BC,
∴∠MPB=∠PBC
∴∠PBM=∠MPB,
∴MB=MP,
∴△BPM是等腰三角形;
②由①知MB=MP,
同理可得:NC=NP,
∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
∵△ABC的周长为a,BC=b,
∴AB+AC+b=a,
∴AB+AC=a﹣b
∴△AMN的周长=a﹣b.
【点睛】
本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
3、
(1)CD,O′D′,△OCD,
(2)③
【分析】
(1)根据SSS证明△D′O′C′≌△DOC,可得结论;
(2)根据SSS证明三角形全等.
(1)
证明:由作图可知,在△D′O′C′和△DOC中,
,
∴△O′C′D′≌△OCD(SSS),
∴∠A′O′B′=∠AOB.
故答案为:CD,O′D′,△OCD,
(2)
解:上述证明过程中利用三角形全等的方法依据是SSS,
故答案为:③
【点睛】
本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
4、
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
5、6cm
【分析】
先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.
【详解】
解:∵是边上的中线,
∴是的中点,
∴,
∵,
∴,
∴=.
【点睛】
本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.
6、证明见解析.
【分析】
过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.
【详解】
证明:过D作DG∥AC交AB于G,
∵△ABC是等边三角形,
∴AB=AC,∠B=∠ACB=∠BAC=60°,
又∵DG∥AC,
∴∠BDG=∠BGD=60°,
∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,
∴DG=BD,
∵点D为BC的中点,
∴BD=CD,
∴DG=CD,
∵EC是△ABC外角的平分线,
∴∠ACE=(180°−∠ACB)=60°,
∴∠BCE=∠ACB+∠ACE=120°=∠AGD,
∵AB=AC,点D为BC的中点,
∴∠ADB=∠ADC=90°,
又∵∠BDG=60°,∠ADE=60°,
∴∠ADG=∠EDC=30°,
在△AGD和△ECD中,
,
∴△AGD≌△ECD(ASA).
∴AD=DE.
【点睛】
本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
7、(1)2<BC<8;(2)25°
【分析】
(1)根据三角形三边关系解答即可;
(2)根据三角形外角性质和三角形内角和解答即可.
【详解】
解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.
∴2<BC<8,
故答案为:2<BC<8
(2)∵∠ADC是△ABD的外角
∴∠ADC=∠B+∠BAD=140
∵∠B=∠BAD
∴∠B=
∵∠B+∠BAC+∠C=180
∴∠C=180﹣∠B﹣∠BAC
即∠C=180﹣70﹣85=25
【点睛】
本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.
8、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
【分析】
【详解】
解:(1)∵折叠
∴EN是的平分线,EM是的平分线,
∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
∵是平角.
∴∠NEM=∠NEA′+∠B′EM==+,
故答案为:,,,90;
(2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
∴∠A′EN+∠1=∠NEM=90°,
∴互为余角为∠1和∠2,
故答案为:∠1、∠2;
②∵∠A′EN=∠3,∠3+∠NEB=180°,
∴∠A′EN的补角为∠NEB.
∵∠B=90°,
∴∠2+∠EMB=90°,
∴∠3=∠EMB,
∵∠CME+∠EMB=180°,
∴∠3+∠CME=180°,
∴∠A′EN的补角为∠CME,
∴∠A′EN的补角为∠CME或∠NEB.
故答案为∠CME或∠NEB.
【点睛】
本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.
9、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
10、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共31页。试卷主要包含了下列三角形与下图全等的三角形是,尺规作图等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共32页。试卷主要包含了如图,点D,如图,ABC≌DEF,点B等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了有下列说法等内容,欢迎下载使用。