


沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题
展开沪教版七年级数学第二学期第十四章三角形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
A.1,2,3 B.3,4,7
C.2,3,4 D.4,5,10
2、下列三角形与下图全等的三角形是( )
A. B. C. D.
3、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
A.2 B.3 C.4 D.7
4、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )
A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC
5、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )
A.8 B.10 C.9 D.16
6、根据下列已知条件,不能画出唯一的是( )
A.,, B.,,
C.,, D.,,
7、三角形的外角和是( )
A.60° B.90° C.180° D.360°
8、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )
A.30° B.40° C.50° D.60°
9、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
10、如图,,点E在线段AB上,,则的度数为( )
A.20° B.25° C.30° D.40°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,,为上的定点,、分别为、上两个动点,当的值最小时,的度数为______.
2、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.
3、小华的作业中有一道数学题:“如图,AC,BD在AB的同侧,BD=4,AB=4,AC=1,∠CED=120°,点E是AB的中点,求CD的最大值.”哥哥看见了,提示他将△ACE和△BDE分别沿CE,连接A′B′.最后小华求解正确,得到CD的最大值是 _____.
4、△ABC的高AD所在直线与高BE所在直线相交于点F且DF=CD,则∠ABC=______.
5、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).
三、解答题(10小题,每小题5分,共计50分)
1、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
2、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.
3、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
4、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
(1)在运动过程中△DEF是什么形状的三角形,并说明理由;
(2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;
5、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
(1)求证:;
(2)若,求BE的长.
6、如图,是的角平分线,于点.
(1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
(2)在(1)中所作的图形中,求证:.
7、如图,是等边三角形,,分别交AB,AC于点D,E.
(1)求证:是等边三角形;
(2)点F在线段DE上,点G在外,,,求证:.
8、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
9、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.
(1)若∠BAC=40°,求∠E的度数;
(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
10、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.
-参考答案-
一、单选题
1、C
【分析】
三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
【详解】
解:A、1+2=3,不能组成三角形,不符合题意;
B、3+4=7,不能组成三角形,不符合题意;
C、2+3>4,能组成三角形,符合题意;
D、4+5<10,不能组成三角形,不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
2、C
【分析】
根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
【详解】
由题可知,第三个内角的度数为,
A.只有两边,故不能判断三角形全等,故此选项错误;
B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
故选:C.
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
3、B
【分析】
根据全等三角形的性质可得,根据即可求得答案.
【详解】
解:ABC≌DEF,
点B、E、C、F在同一直线上,BC=7,EC=4,
故选B
【点睛】
本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
4、C
【分析】
根据全等三角形的判定定理进行判断即可.
【详解】
解:根据题意可知:AB=AC,,
若,则根据可以证明△ABE≌△ACD,故A不符合题意;
若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
故选:C.
【点睛】
本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
5、C
【分析】
延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:,,得出,求解即可.
【详解】
解:如图,延长BD交AC于点E,
∵AD平分,,
∴,,
在和中,
,
∴,
∴,
∴,,
∴,
故选:C.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
6、B
【分析】
根据三角形存在的条件去判断.
【详解】
∵,,,满足ASA的要求,
∴可以画出唯一的三角形,A不符合题意;
∵,,,∠A不是AB,BC的夹角,
∴可以画出多个三角形,B符合题意;
∵,,,满足SAS的要求,
∴可以画出唯一的三角形,C不符合题意;
∵,,,AB最大,
∴可以画出唯一的三角形,D不符合题意;
故选B.
【点睛】
本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
7、D
【分析】
根据三角形的内角和定理、邻补角的性质即可得.
【详解】
解:如图,,
,
又,
,
即三角形的外角和是,
故选:D.
【点睛】
本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.
8、A
【分析】
根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
【详解】
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM−∠CBP=50°−20°=30°,
故选:A.
【点睛】
本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
9、C
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
10、C
【分析】
根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
【详解】
解:∵,
∴BC=CE,∠ACB=∠DCE,
∴∠B=∠BEC,∠ACD=∠BCE,
∵,
∴∠ACD=∠BCE=180°-2×75°=30°,
故选:C.
【点睛】
本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
二、填空题
1、6°
【分析】
作点关于直线的对称点,连接,交于点,过点作,交于点,根据,且当时最小,所以当的值最小时,当点与点重合,点与点重合时,此时等于,进而根据直角三角形的两锐角互余,以及角度的和差关系求得即可
【详解】
解:如图,作点关于直线的对称点,连接,交于点,过点作,交于点,
,
,且当时最小,
所以当的值最小时,当点与点重合,点与点重合时,此时等于,
又
,
根据对称性可得
当的值最小时,的度数为
故答案为:
【点睛】
本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.
2、30°
【分析】
根据三角形的外角的性质,即可求解.
【详解】
解:∵ ,
∴ ,
∵∠ACD=75°,∠A=45°,
∴ .
故答案为:30°
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
3、7
【分析】
由翻折的性质可证△EB'A'是等边三角形,则A'B'=A'E=2,再根据CD≤A'C+A'B'+B'D,即可求出CD的最大值.
【详解】
解:∵AB=4,点E为AB的中点,
∴AE=BE=2,
∵∠CED=120°,
∴∠AEC+∠DEB=60°,
∵将△ACE和△BDE分别沿CE,DE翻折得到△A′CE和△B′DE,
∴A'C=AC=1,AE=A'E=2,∠AEC=∠CEA',DB=DB'=4,BE=B'E=2,∠DEB=∠DEB',
∴∠A'EB'=60°,A'E=B'E=2,
∴△EB'A'是等边三角形,
∴A'B'=A'E=2,
∴当点C,点A',点B',点D四点共线时,CD有最大值=A'C+A'B'+B'D=7,
故答案为:7.
【点睛】
本题主要考查了翻折的性质,等边三角形的判定与性质,两点之间,线段最短等性质,证明△EB'A'是等边三角形是解题的关键.
4、45°或135°
【分析】
根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.
【详解】
解:①如图所示:当为锐角三角形时,
∵,,
∴,
∴,,
∴,
在与中,
,
∴,
∴,
∵,
∴;
②如图所示:当为钝角三角形时,
∵,,
∴,
∴,,
∴,
∵,
∴,
在与中,
,
∴,
∴,
∵,
∴,
,
综合①②可得:为或,
故答案为:或.
【点睛】
题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.
5、角边角或
【分析】
根据全等三角形的判定定理得出即可.
【详解】
解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,
故答案为:角边角或ASA.
【点睛】
本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.
三、解答题
1、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
2、∠AFB=40°.
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
3、见解析
【分析】
根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
【详解】
证明:在△AEC与△ADB中,
,
∴△AEC≌△ADB(SAS),
∴∠ACE=∠ABD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
4、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
【分析】
(1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
(2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
【详解】
(1)解:△DEF是等边三角形,
证明:由点D、E、F的运动情况可知:,
△ABC是等边三角形,
,,
,
,
在与中,
,
,
同理可证,进而有,
,
故△DEF是等边三角形.
(2)解:由(1)可知△DEF是等边三角形,且,
,,,
,
,
在中,,
,
,
,
等边△ABC的周长为.
【点睛】
本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
5、
(1)见解析
(2)
【分析】
(1)利用是的外角,以及证明即可.
(2)证明≌,可知,从而得出答案.
(1)
证明:∵是的外角,
∴.
又∵,∴.
(2)
解:在和中,
,
∴≌.
∴.
∵,
∴.
【点睛】
本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
6、(1)见解析;(2)见解析.
【分析】
(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
【详解】
解:(1)如图,点F、G即为所求作的点;
(2)是的角平分线,,,
【点睛】
本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
7、(1)见详解;(2)见详解
【分析】
(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;
(2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.
【详解】
证明:(1)∵是等边三角形,
∴,
∵DE∥BC,
∴,
∴,
∴是等边三角形;
(2)连接AG,如图所示:
∵是等边三角形,
∴,AB=AC,
∵,,
∴△ABF≌△ACG(SAS),
∴,
∵,
∴,
∴是等边三角形,
∴.
【点睛】
本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.
8、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
9、(1)∠E=35°;(2)AH⊥BE.理由见解析.
【分析】
(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=40°,
∴∠ABC=(180°-∠BAC)=70°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=35°,
∵AE∥BC,
∴∠E=∠CBD=35°;
(2)∵BD平分∠ABC,∠E=∠CBD,
∴∠CBD=∠ABD=∠E,
∴AB=AE,
在△ABD和△AEF中,
,
∴△ABD≌△AEF(SAS),
∴AD=AF,
∵点H是DF的中点,
∴AH⊥BE.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
10、见解析
【分析】
先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.
【详解】
证明:∵BF= CE,
∴BC= EF.
在△ABC和△DEF中,
∴△ABC≌△DEF(SAS).
∴AC=DF.
【点睛】
本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.
初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题: 这是一份初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题,共34页。试卷主要包含了已知等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题,共37页。试卷主要包含了如图,在中,AD,尺规作图等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题: 这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共37页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。