![2022年沪教版七年级数学第二学期第十四章三角形专题测评试题(含答案及详细解析)01](http://img-preview.51jiaoxi.com/2/3/12708797/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版七年级数学第二学期第十四章三角形专题测评试题(含答案及详细解析)02](http://img-preview.51jiaoxi.com/2/3/12708797/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版七年级数学第二学期第十四章三角形专题测评试题(含答案及详细解析)03](http://img-preview.51jiaoxi.com/2/3/12708797/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题
展开沪教版七年级数学第二学期第十四章三角形专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是等边三角形,点在边上,,则的度数为( ).
A.25° B.60° C.90° D.100°
2、已知,,,的相关数据如图所示,则下列选项正确的是( )
A. B. C. D.
3、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )
A.SSS B.SAS C.ASA D.AAS
4、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
5、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
6、下列三角形与下图全等的三角形是( )
A. B. C. D.
7、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50° B.60° C.40° D.30°
8、如图,已知为的外角,,,那么的度数是( )
A.30° B.40° C.50° D.60°
9、如图,在中,AD是角平分线,且,若,则的度数是( )
A.45° B.50° C.52° D.58°
10、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.
A.①② B.①③ C.①②③ D.①②③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.
2、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
3、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.
4、若,则以、为边长的等腰三角形的周长为________.
5、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在中,AD平分,于点E.求证:.
2、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
3、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.
4、如图,AD,BC相交于点O,AO=DO.
(1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);
(2)根据已知及(1)中添加的一个条件,证明AB=DC.
5、如图,AD是的高,CE是的角平分线.若,,求的度数.
6、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
7、已知:如图,点D为BC的中点,,求证:是等腰三角形.
8、如图,将一副直角三角板的直角顶点C叠放在一起.
(1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .
(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.
(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .
9、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
(1)如图1,若,的度数为________;
(2)如图2,当吋,
①依题意补全图2;
②猜想与的数量关系,并加以证明.
10、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
-参考答案-
一、单选题
1、D
【分析】
由等边三角形的性质及三角形外角定理即可求得结果.
【详解】
∵是等边三角形
∴∠C=60°
∴∠ADB=∠DBC+∠C=40°+60°=100°
故选:D
【点睛】
本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
2、D
【分析】
根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
【详解】
解:,
,
在与中,
,
∴≅,
∴,
A、B、C三个选项均不能证明,
故选:D.
【点睛】
题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
3、A
【分析】
利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
【详解】
解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
所以根据“SSS”可判断△OCD≌△O′C′D′,
所以∠A′OB′=∠AOB.
故选:A.
【点睛】
本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
4、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
5、D
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
6、C
【分析】
根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
【详解】
由题可知,第三个内角的度数为,
A.只有两边,故不能判断三角形全等,故此选项错误;
B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
故选:C.
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
7、A
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
8、B
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
9、A
【分析】
根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
【详解】
解:∵AD是角平分线,,
∴∠DCA==30°,
∵AD=AC,
∴∠C=(180°-∠DCA)÷2=75°,
∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
故选:A.
【点睛】
本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
10、C
【分析】
根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
【详解】
解:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD,故①正确;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC,故②正确;
在Rt△BEA和Rt△BEC中
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AC=BF,故③正确;
∵CE=AC=BF,BH=BC,
在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
∴∠BFC=112.5°,
∴BF<BC,
∴CE<BH,故④错误;
故选:C.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
二、填空题
1、
【分析】
连接,交于点,连接,则的最小值为,再由已知求出的长即可.
【详解】
解:连接,交于点,连接,
是等边三角形,是边中点,
点与点关于对称,
,
,
的最小值为,
是的中点,
,
,的面积为,
,
的最小值为,
故答案为:.
【点睛】
本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
2、E
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
3、##
【分析】
先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
【详解】
解:在和中,,
,
,
则的面积是,
故答案为:.
【点睛】
本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
4、17
【分析】
先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可.
【详解】
解:∵,
∴,,
解得:,,
①若是腰长,则底边为7,三角形的三边分别为3、3、7,
∵,
∴3、3、7不能组成三角形;
②若是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,
周长为:,
∴以、为边长的等腰三角形的周长为17,
故答案为:17.
【点睛】
本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解.
5、
【分析】
根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.
【详解】
由题意得:△的面积=,△的面积=,……,△的面积==.
故答案是:.
【点睛】
本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.
三、解答题
1、证明见解析.
【分析】
延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.
【详解】
证明:延长CE交AB于F,
∵CE⊥AD,
∴∠AEC=∠AEF,
∵AD平分∠BAC,
∴∠FAE=∠CAE,
在△FAE和△CAE中,
∵ ,
∴△FAE≌△CAE(ASA),
∴∠ACE=∠AFC,
∵∠AFC=∠B+∠ECD,
∴∠ACE=∠B+∠ECD.
【点睛】
本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC=∠ACE.
2、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
3、见解析
【分析】
先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.
【详解】
证明:∵BF= CE,
∴BC= EF.
在△ABC和△DEF中,
∴△ABC≌△DEF(SAS).
∴AC=DF.
【点睛】
本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.
4、(1)OB=OC(或,或);(2)见解析
【分析】
(1)根据SAS添加OB=OC即可;
(2)由(1)得△AOB≌△DOC,由全等三角形的性质可得结论.
【详解】
解:(1)添加的条件是:OB=OC(或,或)
证明:在和中
所以,△AOB≌△DOC
(2)由(1)知,△AOB≌△DOC
所以,AB=DC.
【点睛】
本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键
5、
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
6、(1);(2)证明见详解.
.
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
7、证明见解析
【分析】
过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
【详解】
如下图,过点D作,交AB于点M,过点D做,交AC于点N
∵
∴
直角和直角中
∴
∴
∵点D为BC的中点,
∴
直角和直角中
∴
∴
∵,
∴,即是等腰三角形.
【点睛】
本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
8、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°
【分析】
(1)根据角的和差定义计算即可.
(2)利用角的和差定义计算即可.
(3)利用特殊三角板的性质,角的和差定义即可解决问题.
【详解】
解:(1)由题意,
;
;
故答案为:57°,147°.
(2)∠ACB=180°-∠DCE,
理由如下:
∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,
∴ ∠ACB=∠ACE+∠DCE+∠BCD
=90°-∠DCE+∠DCE+90°-∠DCE
=180°-∠DCE.
(3)结论:∠DAB+∠CAE=120°.
理由如下:
∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,
又∵∠DAC=∠EAB=60°,
∴∠DAB+∠CAE=60°+60°=120°.
故答案为:∠DAB+∠CAE=120°.
【点睛】
本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
9、
(1)120°
(2)①图形见解析;②
【分析】
(1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
(1)
(1)如图1,
在Rt△ABC中,∠B=30°,
∴∠BAC=60°,
由旋转知,∠CAE=60°=∠CAB,
∴点E在边AB上,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠ACB=90°,
∴∠CFE=∠B+∠BEF=30°+90°=120°,
故答案为120°;
(2)
(2)①依题意补全图形如图2所示,
②如图2,连接AF,
∵∠BAD=∠CAE,
∴∠EAD=∠CAB,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠C=90°,
∴∠AEF=90°,
∴Rt△AEF≌Rt△ACF(HL),
∴∠EAF=∠CAF,
∴∠CAF=∠CAE=30°,
在Rt△ACF中,CF=AF,且AC2+CF2=AF2,
∴
【点睛】
此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.
10、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共34页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共36页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题: 这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共33页。