


沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题
展开
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共34页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在△ABC中,∠A=∠B=∠C,则∠C=( )
A.70° B.80° C.100° D.120°
2、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110° B.70° C.55° D.35°
3、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( )
A.30° B.20° C.10° D.15°
4、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
5、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
6、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
7、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为( )
A.15° B.20° C.25° D.30°
8、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
A.1个 B.2个 C.3个 D.4个
9、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )
A.10 B.15 C.17 D.19
10、下列长度的三条线段能组成三角形的是( )
A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.
2、在平面直角坐标系中,点B(0,4),点A为x轴上一动点,连接AB.以AB为边作等腰Rt△ABE,(B、A、E按逆时针方向排列,且∠BAE为直角),连接OE.当OE最小时,点E的纵坐标为______.
3、如图,中,,点在边上,,若,则的度数为_______.
4、如图,在ABC中,AB=AC,∠A=36°,点D在AC上,且BD=BC,则∠BDC=_______.
5、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________
三、解答题(10小题,每小题5分,共计50分)
1、如图,在中,AD平分,于点E.求证:.
2、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
(1)如图1,点D在线段BC上.
①根据题意补全图1;
②∠AEF = (用含有的代数式表示),∠AMF= °;
③用等式表示线段MA,ME,MF之间的数量关系,并证明.
(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.
3、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
4、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
5、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
(1)△AMN是否是等腰三角形?说明理由;
(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
①求证:△BPM是等腰三角形;
②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).
6、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.
7、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
(1)用等式表示 与CP的数量关系,并证明;
(2)当∠BPC=120°时,
①直接写出 的度数为 ;
②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.
8、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
(1)如图1,若,的度数为________;
(2)如图2,当吋,
①依题意补全图2;
②猜想与的数量关系,并加以证明.
9、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.
(1)如图1,求证:AD=BE;
(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
10、阅读以下材料,并按要求完成相应的任务:
从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.
任务:
如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.
-参考答案-
一、单选题
1、D
【分析】
根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
【详解】
解:∵在△ABC中,,∠A=∠B=∠C,
∴
解得
故选D
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
2、C
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
【详解】
解:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∵∠B=35°,
∴∠BAD=90°−35°=55°.
故选:C.
【点睛】
本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
3、B
【分析】
利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.
【详解】
解:∵AD是∠BAC的平分线,
∴∠EAD=∠CAD
在△ADE和△ADC中,
,
∴△ADE≌△ADC(SAS),
∴∠DEA=∠C,
∵,∠DEA=∠B +,
∴;
故选:B
【点睛】
本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.
4、D
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
5、A
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
6、D
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
7、A
【分析】
先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
【详解】
解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
∴∠EFD=60°,∠ABC=45°,
∵BC∥AD,
∴∠EFD=∠FBC=60°,
∴∠ABF=∠FBC-∠ABC=15°,
故选A.
【点睛】
本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
8、C
【分析】
根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
【详解】
解:c的范围是:5﹣3<c<5+3,即2<c<8.
∵c是奇数,
∴c=3或5或7,有3个值.
则对应的三角形有3个.
故选:C.
【点睛】
本题主要考查了三角形三边关系,准确分析判断是解题的关键.
9、C
【分析】
等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
【详解】
解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.
②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.
故选:C.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.
10、C
【分析】
根据三角形的三边关系,逐项判断即可求解.
【详解】
解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
B、因为 ,所以不能组成三角形,故本选项不符合题意;
C、因为 ,所以能组成三角形,故本选项符合题意;
D、因为 ,所以不能组成三角形,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
二、填空题
1、15
【分析】
根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.
【详解】
解:(1)∵EF⊥FG,BG⊥FG,
∴∠EFA=∠AGB=90°,
∴∠AEF+∠EAF=90°,
又∵AE⊥AB,即∠EAB=90°,
∴∠BAG+∠EAF=90°,
∴∠AEF=∠BAG,
在△AEC和△CDB中,
,
∴△EFA≌△AGB(AAS);
同理可证△BGC≌△CHD(AAS),
∴AG=EF=6,CG=DH=4,
∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.
故答案为:15.
【点睛】
本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.
2、-2
【分析】
过E作EF⊥x轴于F,由三垂直模型,得EF=OA,AF=OB,设A(a,0),可求得E(a+4,a),点E在直线y=x-4上,当OE⊥CD时,OE最小,据此求出坐标即可.
【详解】
解:如图,过E作EF⊥x轴于F,
∵∠AOB=∠EFA=∠BAE=90°,
∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,
∴∠ABO=∠EAF,
∵AB=AE,
∴△ABO≌△EAF,
∴EF=OA,AF=OB=4,
取点C(4,0),点D(0,-4),
∴∠OCD=45°,
∵CF=4- OF,OA=4- OF,
∴CF=OA =EF,
∴∠ECF=45°,
∴点E在直线CD上,当OE⊥CD时,OE最小,
此时△EFO和△ECO为等腰Rt△,
∴OF=EF=2,
此时点E的坐标为:(2,-2).
故答案为:-2
【点睛】
本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置.
3、
【分析】
先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.
【详解】
解:∵∠1=145°,
∴∠EDC=35°,
∵DE∥BC,
∴∠C=∠EDC=35°,
又∵∠A=90°,
∴∠B=90°-∠C=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,直角三角形两锐角互余,求出∠C的度数是解题的关键.
4、72°72度
【分析】
根据AB=AC求出∠ACB,利用BD=BC,求出∠BDC的度数.
【详解】
解:∵AB=AC,∠A=36°,
∴,
∵BD=BC,
∴∠BDC=∠ACB=72°,
故答案为:72°.
【点睛】
此题考查了等腰三角形的性质:等边对等角,熟记性质是解题的关键.
5、1
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答.
【详解】
解:∵点E是AD的中点,
∴S△ABE=S△ABD,S△ACE=S△ADC,
∴S△ABE+S△ACE=S△ABC=×4=2cm2,
∴S△BCE=S△ABC=×4=2cm2,
∵点F是CE的中点,
∴S△BEF=S△BCE=×2=1cm2.
故答案为:1.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
三、解答题
1、证明见解析.
【分析】
延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.
【详解】
证明:延长CE交AB于F,
∵CE⊥AD,
∴∠AEC=∠AEF,
∵AD平分∠BAC,
∴∠FAE=∠CAE,
在△FAE和△CAE中,
∵ ,
∴△FAE≌△CAE(ASA),
∴∠ACE=∠AFC,
∵∠AFC=∠B+∠ECD,
∴∠ACE=∠B+∠ECD.
【点睛】
本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC=∠ACE.
2、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
【分析】
(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
【详解】
解:(1)①补全图形如下图:
②∵∠CAE=∠DAC=,
∴∠BAE=30°+
∴∠FAE=2×(30°+)
∴∠AEF==60°-;
∵∠AMF=∠CAE+∠AEF=+60°-=60°,
故答案是:60°-,60°;
③MF=MA+ME.
证明:在FE上截取GF=ME,连接AG .
∵点D关于直线AC的对称点为E,
∴△ADC ≌△AEC.
∴∠CAE =∠CAD =.
∵∠BAC=30°,
∴∠EAN=30°+.
又∵点E关于直线AB的对称点为F,
∴AB垂直平分EF.
∴AF=AE,∠FAN=∠EAN =30°+,
∴∠F=∠AEF=.
∴∠AMG =.
∵AF=AE,∠F=∠AEF, GF=ME,
∴△AFG ≌△AEM.
∴AG =AM.
又∵∠AMG=,
∴△AGM为等边三角形.
∴MA=MG.
∴MF=MG+GF=MA+ME.
(2),理由如下:
如图1所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
又∵∠NAM=30°,
∴AM=2MN,
∴AM=2NE+2EM =MF+ME,
∴MF=AM-ME;
如图2所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
∵∠NAM=30°,
∴AM=2NM,
∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
∴MF=MA-ME;
综上所述:MF=MA-ME.
【点睛】
本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
3、见解析
【分析】
根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
【详解】
证明:在△AEC与△ADB中,
,
∴△AEC≌△ADB(SAS),
∴∠ACE=∠ABD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
4、不合格,理由见解析
【分析】
延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
【详解】
解:如图,延长BD与AC相交于点E.
∵是的一个外角,,,
∴,
同理可得
∵李师傅量得,不是115°,
∴这个零件不合格.
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
5、
(1)△AMN是是等腰三角形;理由见解析;
(2)①证明见解析;②a﹣b.
【分析】
(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
(1)
解:△AMN是是等腰三角形,
理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴△AMN是等腰三角形;
(2)
①证明:∵BP平分∠ABC,
∴∠PBM=∠PBC,
∵MN∥BC,
∴∠MPB=∠PBC
∴∠PBM=∠MPB,
∴MB=MP,
∴△BPM是等腰三角形;
②由①知MB=MP,
同理可得:NC=NP,
∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
∵△ABC的周长为a,BC=b,
∴AB+AC+b=a,
∴AB+AC=a﹣b
∴△AMN的周长=a﹣b.
【点睛】
本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
6、
【分析】
先由旋转的性质证明再利用等边对等角证明从而可得答案.
【详解】
解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,
【点睛】
本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
7、(1),理由见解析;(2)①60°;②PM=,见解析
【分析】
(1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
(2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
【详解】
解:(1) .理由如下:
在等边三角形ABC中,AB=AC,∠BAC=60°,
由旋转可知:
∴
即
在和△ACP中
∴ .
∴ .
(2)①∵∠BPC=120°,
∴∠PBC+∠PCB=60°.
∵在等边三角形ABC中,∠BAC=60°,
∴∠ABC+∠ACB=120°,
∴∠ABP+∠ACP=60°.
∵ .
∴ ,
∴∠ABP+∠ABP'=60°.
即 ;
②PM= .理由如下:
如图,延长PM到N,使得NM=PM,连接BN.
∵M为BC的中点,
∴BM=CM.
在△PCM和△NBM中
∴△PCM≌△NBM(SAS).
∴CP=BN,∠PCM=∠NBM.
∴ .
∵∠BPC=120°,
∴∠PBC+∠PCB=60°.
∴∠PBC+∠NBM=60°.
即∠NBP=60°.
∵∠ABC+∠ACB=120°,
∴∠ABP+∠ACP=60°.
∴∠ABP+∠ABP'=60°.
即 .
∴ .
在△PNB和 中
∴ (SAS).
∴ .
∵
∴ 为等边三角形,
∴ .
∴ ,
∴PM= .
【点睛】
本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.
8、
(1)120°
(2)①图形见解析;②
【分析】
(1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
(1)
(1)如图1,
在Rt△ABC中,∠B=30°,
∴∠BAC=60°,
由旋转知,∠CAE=60°=∠CAB,
∴点E在边AB上,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠ACB=90°,
∴∠CFE=∠B+∠BEF=30°+90°=120°,
故答案为120°;
(2)
(2)①依题意补全图形如图2所示,
②如图2,连接AF,
∵∠BAD=∠CAE,
∴∠EAD=∠CAB,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠C=90°,
∴∠AEF=90°,
∴Rt△AEF≌Rt△ACF(HL),
∴∠EAF=∠CAF,
∴∠CAF=∠CAE=30°,
在Rt△ACF中,CF=AF,且AC2+CF2=AF2,
∴
【点睛】
此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.
9、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【分析】
(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
【详解】
(1)证明:等边△ABC中,CA=CB,∠ACB=60°,
∵CE=CD,∠BCE=60°,
∴△ADC≌△BEC(SAS),
∴AD=BE;
(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
∵CE=CD,∠BCE=60°,
∴△CDE为等边三角形,
∴∠CDE=60°,
∴∠BDE=120°;
∵△ADC≌△BEC,
∴∠DAC=∠EBC,
又∠BDF=∠ADC,
∴∠BFD=∠BCA=60°,
∴∠DFE=120°;
同理可求得∠AFC=∠ABC=60°,
∴∠BFC=∠AFC+∠BFD=120°;
综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
10、成立,证明见解析
【分析】
根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
【详解】
解:成立.
证明:将绕点顺时针旋转,得到,
,,,,,
,、、三点共线,
.
,,,
,
.
【点睛】
本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
相关试卷
这是一份数学七年级下册第十四章 三角形综合与测试同步达标检测题,共31页。试卷主要包含了如图,在中,等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共33页。
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题,共29页。试卷主要包含了下列三角形与下图全等的三角形是,如图,点A,如图,三角形的外角和是等内容,欢迎下载使用。