开学活动
搜索
    上传资料 赚现金

    2022年沪教版七年级数学第二学期第十四章三角形专项训练练习题(含详解)

    2022年沪教版七年级数学第二学期第十四章三角形专项训练练习题(含详解)第1页
    2022年沪教版七年级数学第二学期第十四章三角形专项训练练习题(含详解)第2页
    2022年沪教版七年级数学第二学期第十四章三角形专项训练练习题(含详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十四章 三角形综合与测试练习

    展开

    这是一份数学七年级下册第十四章 三角形综合与测试练习,共32页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    2、下列长度的三条线段能组成三角形的是(  )
    A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
    3、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )

    A. B.
    C. D.
    4、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
    A.65° B.80° C.115° D.50°
    5、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )

    A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC
    6、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为(  )

    A.40° B.45° C.50° D.60°
    7、有两边相等的三角形的两边长为,,则它的周长为( )
    A. B. C. D.或
    8、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).

    A.45° B.60° C.35° D.40°
    9、以下长度的三条线段,能组成三角形的是( )
    A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
    10、如图,已知,要使,添加的条件不正确的是( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.

    2、如图,在△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=∠DAE=60°,AD=2.4,BE=7,则DE=_____.

    3、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.

    4、如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为 _____.

    5、如图,是等腰直角三角形,AB是斜边,以BC为一边在右侧作等边三角形BCD,连接AD与BC交于点E,则的度数为______度.

    三、解答题(10小题,每小题5分,共计50分)
    1、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.

    2、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.

    3、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠2

    4、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
    (1)如图1,若,的度数为________;

    (2)如图2,当吋,
    ①依题意补全图2;
    ②猜想与的数量关系,并加以证明.

    5、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.
    (1)求AE的长度;
    (2)求∠AED的度数.

    6、已知:如图,点D为BC的中点,,求证:是等腰三角形.

    7、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.

    8、如图,是等边三角形,,分别交AB,AC于点D,E.

    (1)求证:是等边三角形;
    (2)点F在线段DE上,点G在外,,,求证:.
    9、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.

    (1)求的度数;
    (2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
    10、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
    (1)用等式表示 与CP的数量关系,并证明;
    (2)当∠BPC=120°时,
    ①直接写出 的度数为 ;
    ②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
    【详解】
    解:∵BF是∠AB的角平分线,
    ∴∠DBF=∠CBF,
    ∵DE∥BC,
    ∴∠DFB=∠CBF,
    ∴∠DBF=∠DFB,
    ∴BD=DF,
    ∴△BDF是等腰三角形;故①正确;
    同理,EF=CE,
    ∴DE=DF+EF=BD+CE,故②正确;
    ∵∠A=50°,
    ∴∠ABC+∠ACB=130°,
    ∵BF平分∠ABC,CF平分∠ACB,
    ∴,
    ∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
    ∴∠BFC=180°﹣65°=115°,故③正确;
    当△ABC为等腰三角形时,DF=EF,
    但△ABC不一定是等腰三角形,
    ∴DF不一定等于EF,故④错误.
    故选:C.
    【点睛】
    本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
    2、C
    【分析】
    根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
    【详解】
    解:A.∵3+4<8,
    ∴不能组成三角形,故本选项不符合题意;
    B.∵4+4<10,
    ∴不能组成三角形,故本选项不符合题意;
    C.∵5+6>10,
    ∴能组成三角形,故本选项符合题意;
    D.∵5+6=11,
    ∴不能组成三角形,故本选项不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
    3、B
    【分析】
    根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
    【详解】
    解:由三角形内角和知∠BAC=180°-∠2-∠1,
    ∵AE为∠BAC的平分线,
    ∴∠BAE=∠BAC=(180°-∠2-∠1).
    ∵AD为BC边上的高,
    ∴∠ADC=90°=∠DAB+∠ABD.
    又∵∠ABD=180°-∠2,
    ∴∠DAB=90°-(180°-∠2)=∠2-90°,
    ∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
    故选:B
    【点睛】
    本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
    4、C
    【分析】
    根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
    【详解】
    解:如图,∵∠A=50°,
    ∴∠ABC+∠ACB=180°-∠A=130°,
    ∵BD、CE分别是∠ABC、∠ACB的平分线,
    ∴∠CBD=∠ABC,∠ECB=∠ACB,
    ∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.

    故选:C
    【点睛】
    本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
    5、C
    【分析】
    根据全等三角形的判定定理进行判断即可.
    【详解】
    解:根据题意可知:AB=AC,,
    若,则根据可以证明△ABE≌△ACD,故A不符合题意;
    若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
    若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
    若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
    6、C
    【分析】
    根据三角形内角和定理确定,然后利用平行线的性质求解即可.
    【详解】
    解:∵,,
    ∴,
    ∵,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
    7、D
    【分析】
    有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
    【详解】
    解:当4为底时,其它两边都为5,
    4、5、5可以构成三角形,周长为;
    当4为腰时,其它两边为4和5,
    4、4、5可以构成三角形,周长为.
    综上所述,该等腰三角形的周长是或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
    8、A
    【分析】
    由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
    【详解】
    解:由折叠得∠B=∠BCD,
    ∵∠A+∠B+∠ACB=180°,,,
    ∴65°+2∠B+25°=180°,
    ∴∠B=45°,
    故选:A.
    【点睛】
    此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
    9、C
    【分析】
    由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
    【详解】
    解:A、2+3=5,不能组成三角形,不符合题意;
    B、4+4=8,不能组成三角形,不符合题意;
    C、3+4.8>7,能组成三角形,符合题意;
    D、3+5<9,不能组成三角形,不符合题意.
    故选:C.
    【点睛】
    本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
    10、D
    【分析】
    已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.
    【详解】
    解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;
    B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;
    C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;
    D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;
    故选:D.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.
    二、填空题
    1、20
    【分析】
    利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.
    【详解】
    解:∵EF∥CD,
    ∴,
    ∵∠1是△DCB的外角,
    ∴∠1-∠B=50°-30°=20º,
    故答案为:20.

    【点睛】
    本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.
    2、4.6
    【分析】
    在AB上截取BF=AD,连接CF,通过证明△ADC≌△BFC,可得∠ACD=∠BCF,CD=CF,由“SAS”可得△DCE≌△FCE,可得DE=EF,即可求得结果.
    【详解】
    解:如图,在AB上截取BF=AD,连接CF,

    ∵CA=CB,∠ACB=120°,
    ∴∠CAB=∠CBA=30°,
    ∵∠DAE=60°
    ∴∠DAC=∠DAE﹣∠CAB=30°
    ∴∠DAC=∠CBA,且AD=BF,AC=BC
    ∴△ADC≌△BFC(SAS)
    ∴∠ACD=∠BCF,CD=CF,
    ∵∠ACB=∠ACE+∠ECF+∠BCF=∠ACE+∠ECF+∠ACD=∠DCE+∠ECF=120°
    ∴∠ECF=60°=∠DCE,且CE=CE,DC=CF
    ∴△DCE≌△FCE(SAS)
    ∴DE=EF
    ∴DE=BE﹣BF=BE﹣AD=7﹣2.4=4.6,
    故答案为4.6
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键.
    3、
    【分析】
    连接,交于点,连接,则的最小值为,再由已知求出的长即可.
    【详解】
    解:连接,交于点,连接,
    是等边三角形,是边中点,

    点与点关于对称,


    的最小值为,
    是的中点,

    ,的面积为,

    的最小值为,
    故答案为:.
    【点睛】
    本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
    4、
    【分析】
    如图(见解析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案.
    【详解】
    解:如图,在和中,,



    故答案为:.

    【点睛】
    本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.
    5、75
    【分析】
    由题意,是等腰三角形,然后求出的度数,再根据三角形的外角性质,即可求出的度数.
    【详解】
    解:∵是等腰直角三角形,
    ∴AC=BC,∠ABC=∠BAC=45°,∠ACB=90°,
    ∵△BCD是等边三角形,
    ∴BC=CD,∠BCD=60°,
    ∴AC=CD,∠ACD=90°+60°=150°,
    ∴是等腰三角形,
    ∴,
    ∴,
    ∴;
    故答案为:75.
    【点睛】
    本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出.
    三、解答题
    1、见解析.
    【分析】
    先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.
    【详解】
    解:∵AD平分∠BAC,
    ∴∠BAD=∠BAC,
    ∵AE=AC,
    ∴∠E=∠ACE,
    ∵∠E+∠ACE=∠BAC,
    ∴∠E=∠BAC,
    ∴∠BAD=∠E,
    ∴AD∥CE.
    【点睛】
    本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.
    2、见解析
    【分析】
    利用AAS即可证明△ABO≌△EDO.
    【详解】
    证明:∵AB⊥BE,DE⊥AD,
    ∴∠B=∠D=90°.
    在△ABO和△EDO中

    ∴△ABO≌△EDO.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
    3、见详解.
    【分析】
    根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.
    【详解】
    证明:∵△ABC中,AB=AC,D为BC边的中点,
    ∴AD⊥BC,∠B=∠C,
    ∵AF⊥AD,
    ∴AF∥BC,
    ∴∠1=∠B,∠2=∠C,
    ∴∠1=∠2.
    【点睛】
    本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.
    4、
    (1)120°
    (2)①图形见解析;②
    【分析】
    (1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
    (2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
    (1)
    (1)如图1,

    在Rt△ABC中,∠B=30°,
    ∴∠BAC=60°,
    由旋转知,∠CAE=60°=∠CAB,
    ∴点E在边AB上,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠ACB=90°,
    ∴∠CFE=∠B+∠BEF=30°+90°=120°,
    故答案为120°;
    (2)
    (2)①依题意补全图形如图2所示,

    ②如图2,连接AF,
    ∵∠BAD=∠CAE,
    ∴∠EAD=∠CAB,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠C=90°,
    ∴∠AEF=90°,
    ∴Rt△AEF≌Rt△ACF(HL),
    ∴∠EAF=∠CAF,
    ∴∠CAF=∠CAE=30°,
    在Rt△ACF中,CF=AF,且AC2+CF2=AF2,

    【点睛】
    此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.
    5、(1);(2).
    【分析】
    (1)先根据全等三角形的性质可得,再根据线段的和差即可得;
    (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.
    【详解】
    解:(1)∵,
    ∴,
    ∵,
    ∴;
    (2)∵,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.
    6、证明见解析
    【分析】
    过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
    【详解】
    如下图,过点D作,交AB于点M,过点D做,交AC于点N



    直角和直角中



    ∵点D为BC的中点,

    直角和直角中



    ∵,
    ∴,即是等腰三角形.
    【点睛】
    本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
    7、见解析
    【分析】
    由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
    【详解】
    证明:


    ,即.
    ∴在和中,

    【点睛】
    本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.
    8、(1)见详解;(2)见详解
    【分析】
    (1)由题意易得,然后根据平行线的性质可得,进而问题可求证;
    (2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.
    【详解】
    证明:(1)∵是等边三角形,
    ∴,
    ∵DE∥BC,
    ∴,
    ∴,
    ∴是等边三角形;
    (2)连接AG,如图所示:

    ∵是等边三角形,
    ∴,AB=AC,
    ∵,,
    ∴△ABF≌△ACG(SAS),
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴.
    【点睛】
    本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.
    9、(1)70°;(2)15km/h
    【分析】
    (1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
    (2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
    【详解】
    解:(1)根据题意得∠BAC=70°,∠ABC=40°,
    ∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
    (2)∵∠BAC=∠ACB=70°,
    ∴BC=AB=75km,
    ∴轮船的速度为75÷5=15(km/h).
    【点睛】
    本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
    10、(1),理由见解析;(2)①60°;②PM=,见解析
    【分析】
    (1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
    (2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
    ②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
    【详解】
    解:(1) .理由如下:
    在等边三角形ABC中,AB=AC,∠BAC=60°,
    由旋转可知:


    在和△ACP中

    ∴ .
    ∴ .
    (2)①∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∵在等边三角形ABC中,∠BAC=60°,
    ∴∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∵ .
    ∴ ,
    ∴∠ABP+∠ABP'=60°.
    即 ;
    ②PM= .理由如下:
    如图,延长PM到N,使得NM=PM,连接BN.

    ∵M为BC的中点,
    ∴BM=CM.
    在△PCM和△NBM中

    ∴△PCM≌△NBM(SAS).
    ∴CP=BN,∠PCM=∠NBM.
    ∴ .
    ∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∴∠PBC+∠NBM=60°.
    即∠NBP=60°.
    ∵∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∴∠ABP+∠ABP'=60°.
    即 .
    ∴ .
    在△PNB和 中

    ∴ (SAS).
    ∴ .

    ∴ 为等边三角形,
    ∴ .
    ∴ ,
    ∴PM= .
    【点睛】
    本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.

    相关试卷

    2020-2021学年第十四章 三角形综合与测试练习:

    这是一份2020-2021学年第十四章 三角形综合与测试练习,共30页。试卷主要包含了如图,在中,等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共33页。试卷主要包含了若一个三角形的三个外角之比为3,已知长方形纸片ABCD,点E等内容,欢迎下载使用。

    数学沪教版 (五四制)第十四章 三角形综合与测试精练:

    这是一份数学沪教版 (五四制)第十四章 三角形综合与测试精练,共32页。试卷主要包含了有下列说法等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map