终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试题(精选)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试题(精选)第1页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试题(精选)第2页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试题(精选)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共35页。试卷主要包含了下列三角形与下图全等的三角形是,定理等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
    A.3B.4C.5D.6
    2、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
    A.6cmB.5cmC.3cmD.1cm
    3、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个B.2个C.3个D.4个
    4、下列三角形与下图全等的三角形是( )
    A.B.C.D.
    5、下列各组线段中,能构成三角形的是( )
    A.2、4、7B.4、5、9C.5、8、10D.1、3、6
    6、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
    A.1,2,3B.3,4,7
    C.2,3,4D.4,5,10
    7、下列所给的各组线段,能组成三角形的是:( )
    A.2,11,13B.5,12,7C.5,5,11D.5,12,13
    8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
    下列说法正确的是( )
    A.证法1用特殊到一般法证明了该定理
    B.证法1只要测量够100个三角形进行验证,就能证明该定理
    C.证法2还需证明其他形状的三角形,该定理的证明才完整
    D.证法2用严谨的推理证明了该定理
    9、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .
    A.40°B.50°C.70°D.100
    10、如图,已知为的外角,,,那么的度数是( )
    A.30°B.40°C.50°D.60°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,连接AC、BD交于点M,连接OM.下列结论:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论是 _____.(填序号)
    2、如图,在正方形网格中,∠BAC______∠DAE.(填“>”、“=”或“<”)
    3、已知△ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+EP的最小值为_______.
    4、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________
    5、如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是 ____________.
    三、解答题(10小题,每小题5分,共计50分)
    1、直线l经过点A,在直线l上方,.
    (1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:
    (2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.
    (3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.
    2、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.
    3、已知:如图,点D为BC的中点,,求证:是等腰三角形.
    4、如图所示,四边形的对角线、相交于点,已知,.求证:
    (1);
    (2).
    5、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.
    6、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
    (1)如图1,请直接写出∠A和∠C之间的数量关系: .
    (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
    (3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .
    7、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
    (1)求证:;
    (2)若,求BE的长.
    8、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
    9、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
    (1)用等式表示 与CP的数量关系,并证明;
    (2)当∠BPC=120°时,
    ①直接写出 的度数为 ;
    ②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.
    10、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:
    已知:∠AOB.
    求作:∠A′O′B′,使∠A′O′B′=∠AOB.
    作图:
    (1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
    (2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
    (3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
    (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
    请你根据以上材料完成下列问题:
    (1)完成下面证明过程(将正确答案写在相应的横线上).
    证明:由作图可知,在△O′C′D′和△OCD中,

    ∴△O′C′D′≌ ,
    ∴∠A′O′B'=∠AOB.
    (2)这种作一个角等于已知角的方法依据是 .(填序号)
    ①AAS;②ASA;③SSS;④SAS
    -参考答案-
    一、单选题
    1、A
    【分析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
    【详解】
    解:如图:分情况讨论:
    ①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
    故共有3个点,
    故选:A.
    【点睛】
    本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
    2、C
    【分析】
    根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
    【详解】
    解:设第三边长为xcm,根据三角形的三边关系可得:
    3-2<x<3+2,
    解得:1<x<5,
    只有C选项在范围内.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
    3、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    4、C
    【分析】
    根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
    【详解】
    由题可知,第三个内角的度数为,
    A.只有两边,故不能判断三角形全等,故此选项错误;
    B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
    C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
    D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
    故选:C.
    【点睛】
    本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
    5、C
    【分析】
    根据三角形的三边关系定理逐项判断即可得.
    【详解】
    解:三角形的三边关系定理:任意两边之和大于第三边.
    A、,不能构成三角形,此项不符题意;
    B、,不能构成三角形,此项不符题意;
    C、,能构成三角形,此项符合题意;
    D、,不能构成三角形,此项不符题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
    6、C
    【分析】
    三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
    【详解】
    解:A、1+2=3,不能组成三角形,不符合题意;
    B、3+4=7,不能组成三角形,不符合题意;
    C、2+3>4,能组成三角形,符合题意;
    D、4+5<10,不能组成三角形,不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
    7、D
    【分析】
    根据三角形三边关系定理,判断选择即可.
    【详解】
    ∵2+11=13,
    ∴A不符合题意;
    ∵5+7=12,
    ∴B不符合题意;
    ∵5+5=10<11,
    ∴C不符合题意;
    ∵5+12=17>13,
    ∴D符合题意;
    故选D.
    【点睛】
    本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
    8、D
    【分析】
    利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
    【详解】
    解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
    证法2才是用严谨的推理证明了该定理,
    故A不符合题意,C不符合题意,D符合题意,
    证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
    故选D
    【点睛】
    本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
    9、C
    【分析】
    根据旋转的性质,可得 , ,从而得到,即可求解.
    【详解】
    解:∵绕点A按逆时针方向旋转40°后与重合,
    ∴ , ,
    ∴.
    故选:C
    【点睛】
    本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
    10、B
    【分析】
    根据三角形的外角性质解答即可.
    【详解】
    解:∵∠ACD=60°,∠B=20°,
    ∴∠A=∠ACD−∠B=60°−20°=40°,
    故选:B.
    【点睛】
    此题考查三角形的外角性质,关键是根据三角形外角性质解答.
    二、填空题
    1、①②④
    【分析】
    由证明得出,,①正确;
    由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;
    作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,④正确;
    假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故③错误;即可得出结论.
    【详解】
    解:,

    即,
    在和中,


    ,,故①正确;

    由三角形的外角性质得:

    ,故②正确;
    作于,于,如图所示,
    则,


    平分,故④正确;
    假设平分,则,
    在与中,





    而,故③错误;
    所以其中正确的结论是①②④.
    故答案为:①②④.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.
    2、
    【分析】
    找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得.
    【详解】
    解;如图,找到点,连接,
    则是等腰直角三角形,

    又是等腰直角三角形,

    故答案为:.
    【点睛】
    本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键.
    3、
    【分析】
    作BM⊥AC于M,交AD于P,根据等腰三角形的性质得到AD⊥BC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BE≥BM,根据数据线的面积公式即可得到结论.
    【详解】
    解:作BM⊥AC于M,交AD于P,
    ∵△ABC是等腰三角形,AD是BC边上的中线,
    ∴AD⊥BC,
    ∴AD是BC的垂直平分线,
    ∴点B,C关于AD为对称,
    ∴BP=CP,
    根据垂线段最短得出:CP+EP=BP+EP=BE≥BM,
    ∵AC=BC=5,
    ∵S△ABC=BC•AD=AC•BM=12,
    ∴BM=AD=,
    即EP+CP的最小值为,
    故答案为:.
    【点睛】
    本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键.
    4、70°
    【分析】
    先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.
    【详解】
    ∵AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    ∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,
    ∴∠BAC=∠1+∠DAC=45°+25°=70°.
    【点睛】
    本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
    5、∠1=∠2(或填AD=CB)
    【分析】
    根据题意知,在△ABD与△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.
    【详解】
    解:∵在△ABD与△CDB中,AB=CD,BD=DB,
    ∴添加∠1=∠2时,可以根据SAS判定△ABD≌△CDB,
    添加AD=CB时,可以根据SSS判定△ABD≌△CDB,,
    故答案为∠1=∠2(或填AD=CB).
    【点睛】
    本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    三、解答题
    1、(1)见解析;(2)猜想:,见解析;(3)见解析
    【分析】
    (1)先证明和,再根据证明即可;
    (2)根据AAS证明得,,进一步可得出结论;
    (3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.
    【详解】
    解:(1)证明:∵,,
    ∴,

    ∵,

    ∴,
    在与中


    (2)猜想:,

    ∴,
    ∴,
    在与中
    ∴,
    ∴,,

    (3)分别过点C、E作,,
    同(1)可证,,
    ∴,
    ∴,
    ∵,,

    在与中
    ∴,
    ∴,
    ∴G为CE的中点.
    【点睛】
    本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.
    2、见解析
    【分析】
    根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
    【详解】
    解:∵AB=AC,AD是△ABC的中线,
    ∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
    ∵DE=DE,
    ∴△BDE≌△CDE,
    ∴∠DCE=∠DBE,
    ∵BE平分∠ABC,
    ∴ ,
    ∴,
    ∴,
    ∴CE平分∠ACB.
    【点睛】
    本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
    3、证明见解析
    【分析】
    过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
    【详解】
    如下图,过点D作,交AB于点M,过点D做,交AC于点N


    直角和直角中



    ∵点D为BC的中点,

    直角和直角中



    ∵,
    ∴,即是等腰三角形.
    【点睛】
    本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
    4、
    (1)证明见解析;
    (2)证明见解析.
    【分析】
    (1)根据全等三角形的判定定理可直接证明;
    (2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.
    (1)
    解:在与中,

    ∴;
    (2)
    由(1)可得:,
    ∴,
    ∵,
    ∴,
    ∴,
    即.
    【点睛】
    题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.
    5、见解析
    【分析】
    由“ASA”可证△ABO≌△DCO,可得结论.
    【详解】
    证明:如图,记的交点为
    ∵∠ABC=∠DCB,∠1=∠2,
    又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
    ∴∠OBC=∠OCB,
    ∴OB=OC,
    在△ABO和△DCO中,,
    ∴△ABO≌△DCO(ASA),
    ∴AB=DC.
    【点睛】
    本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
    6、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
    【分析】
    (1)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (2)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
    【详解】
    (1)过点B作BE∥AM,如图,
    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C=∠CBE,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
    故答案为:∠A+∠C=90°;
    (2)∠A和∠C满足:∠C﹣∠A=90°.理由:
    过点B作BE∥AM,如图,
    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C+∠CBE=180°,
    ∴∠CBE=180°﹣∠C,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠ABE+∠CBE=90°,
    ∴∠A+180°﹣∠C=90°,
    ∴∠C﹣∠A=90°;
    (3)设CH与AB交于点F,如图,
    ∵AE平分∠MAB,
    ∴∠GAF=∠MAB,
    ∵CH平分∠NCB,
    ∴∠BCF=∠BCN,
    ∵∠B=90°,
    ∴∠BFC=90°﹣∠BCF,
    ∵∠AFG=∠BFC,
    ∴∠AFG=90°﹣∠BCF.
    ∵∠AGH=∠GAF+∠AFG,
    ∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
    由(2)知:∠BCN﹣∠MAB=90°,
    ∴∠AGH=90°﹣45°=45°.
    故答案为:45°.
    【点睛】
    本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
    7、
    (1)见解析
    (2)
    【分析】
    (1)利用是的外角,以及证明即可.
    (2)证明≌,可知,从而得出答案.
    (1)
    证明:∵是的外角,
    ∴.
    又∵,∴.
    (2)
    解:在和中,

    ∴≌.
    ∴.
    ∵,
    ∴.
    【点睛】
    本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
    8、证明见解析.
    【分析】
    先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
    【详解】
    证明:,




    在和中,,


    【点睛】
    本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
    9、(1),理由见解析;(2)①60°;②PM=,见解析
    【分析】
    (1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
    (2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
    ②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
    【详解】
    解:(1) .理由如下:
    在等边三角形ABC中,AB=AC,∠BAC=60°,
    由旋转可知:


    在和△ACP中

    ∴ .
    ∴ .
    (2)①∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∵在等边三角形ABC中,∠BAC=60°,
    ∴∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∵ .
    ∴ ,
    ∴∠ABP+∠ABP'=60°.
    即 ;
    ②PM= .理由如下:
    如图,延长PM到N,使得NM=PM,连接BN.
    ∵M为BC的中点,
    ∴BM=CM.
    在△PCM和△NBM中

    ∴△PCM≌△NBM(SAS).
    ∴CP=BN,∠PCM=∠NBM.
    ∴ .
    ∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∴∠PBC+∠NBM=60°.
    即∠NBP=60°.
    ∵∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∴∠ABP+∠ABP'=60°.
    即 .
    ∴ .
    在△PNB和 中

    ∴ (SAS).
    ∴ .

    ∴ 为等边三角形,
    ∴ .
    ∴ ,
    ∴PM= .
    【点睛】
    本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.
    10、
    (1)CD,O′D′,△OCD,
    (2)③
    【分析】
    (1)根据SSS证明△D′O′C′≌△DOC,可得结论;
    (2)根据SSS证明三角形全等.
    (1)
    证明:由作图可知,在△D′O′C′和△DOC中,

    ∴△O′C′D′≌△OCD(SSS),
    ∴∠A′O′B′=∠AOB.
    故答案为:CD,O′D′,△OCD,
    (2)
    解:上述证明过程中利用三角形全等的方法依据是SSS,
    故答案为:③
    【点睛】
    本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    证法1:如图,
    ∵∠A=70°,∠B=63°,
    且∠ACD=133°(量角器测量所得)
    又∵133°=70°+63°(计算所得)
    ∴∠ACD=∠A+∠B(等量代换).
    证法2:如图,
    ∵∠A+∠B+∠ACB=180°(三角形内角和定理),
    又∵∠ACD+∠ACB=180°(平角定义),
    ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
    ∴∠ACD=∠A+∠B(等式性质).

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共33页。试卷主要包含了定理等内容,欢迎下载使用。

    沪教版 (五四制)第十四章 三角形综合与测试课时训练:

    这是一份沪教版 (五四制)第十四章 三角形综合与测试课时训练,共35页。试卷主要包含了三角形的外角和是,有下列说法等内容,欢迎下载使用。

    初中数学第十四章 三角形综合与测试课时练习:

    这是一份初中数学第十四章 三角形综合与测试课时练习,共37页。试卷主要包含了三角形的外角和是,已知长方形纸片ABCD,点E,下列说法不正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map