


2021学年第十三章 相交线 平行线综合与测试同步测试题
展开
这是一份2021学年第十三章 相交线 平行线综合与测试同步测试题,共29页。试卷主要包含了下列说法中正确的有,如图,直线AB等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
A.① B.②和③ C.④ D.①和④
2、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是( )
A.线段AC的长度表示点C到AB的距离
B.线段AD的长度表示点A到BC的距离
C.线段CD的长度表示点C到AD的距离
D.线段BD的长度表示点A到BD的距离
3、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个 B.2个 C.3个 D.4个
4、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
5、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
A.39° B.41° C.49° D.51°
6、如图,下列条件中,不能判断∥的是( )
A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4
7、下列说法中正确的有( )
①一条直线的平行线只有一条.
②过一点与已知直线平行的直线只有一条.
③因为a∥b,c∥d,所以a∥d.
④经过直线外一点有且只有一条直线与已知直线平行.
A.1个 B.2个 C.3个 D.4个
8、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
9、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
10、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.
2、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.
3、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______
4、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.
5、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
解:∵AEBF,
∴∠EAB= .( )
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD( )
∴∠EAB﹣ =∠FBG﹣ ,
即∠1=∠2.
∴ ( ).
2、作图并计算:如图,点O在直线上.
(1)画出的平分线(不必写作法);
(2)在(1)的前提下,若,求的度数.
3、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)
(1)当t=3时,求∠AOB的度数;
(2)在运动过程中,当∠AOB达到60°时,求t的值;
(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
4、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A= ( ).
∴AB∥ ( ).
又∵∠1=∠2(已知),
∴AB∥CD ( ).
∴EF∥ ( ).
∴∠FDG=∠EFD ( ).
5、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
6、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.
7、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?
观察下面的解答过程,补充必要的依据或结论.
解∵∠1=60°(已知)
∠ABC=∠1 (① )
∴∠ABC=60°(等量代换)
又∵∠2=120°(已知)
∴(② )+∠2=180°(等式的性质)
∴AB∥CD (③ )
又∵∠2+∠BCD=(④ °)
∴∠BCD=60°(等式的性质)
∵∠D=60°(已知)
∴∠BCD=∠D (⑤ )
∴BC∥DE (⑥ )
8、如图,①过点Q作QD⊥AB,垂足为点D;
②过点P作PE⊥AB,垂足为点E;
③过点Q作QF⊥AC,垂足为点F;
④连P,Q两点;
⑤P,Q两点间的距离是线段______的长度;
⑥点Q到直线AB的距离是线段______的长度;
⑦点Q到直线AC的距离是线段______的长度;
⑧点P到直线AB的距离是线段______的长度.
9、如图,AB∥DG,∠1+∠2=180°.
(1)试说明:AD∥EF;
(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
10、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
(1)如图a,在线段AB上找一点P,使PC+PD最小.
(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
(3)如图c,画线段CM∥AB.要求点M在格点上.
-参考答案-
一、单选题
1、A
【分析】
利用平行线的性质逐一判断即可.
【详解】
①是平行线的性质,故符合题意;
②是平行线的判定,故不符合题意;
③是平行线的判定,故不符合题意;
④是平行线的判定,故不符合题意;
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
2、D
【分析】
根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.
【详解】
解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;
B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;
C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;
D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;
故选:D.
【点睛】
本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.
3、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
4、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
5、C
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
6、D
【分析】
根据平行线的判定定理对各选项进行逐一判断即可.
【详解】
解:、,内错角相等,
,故本选项错误,不符合题意;
、,同位角相等,
,故本选项错误,不符合题意;
、,同旁内角互补,
,故本选项错误,不符合题意;
、,它们不是内错角或同位角,
与的关系无法判定,故本选项正确,符合题意.
故选:D.
【点睛】
本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
7、A
【分析】
根据平行线的性质,平行线的判定判断即可.
【详解】
∵一条直线的平行线有无数条,
∴①的说法不正确;
∵经过直线外一点有且只有一条直线与已知直线平行,
∴②的说法不正确,④的说法正确;
∵a∥b,c∥d,无法判定a∥d
∴③的说法不正确.
只有一个是正确的,
故选A.
【点睛】
本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
8、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
9、D
【分析】
由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
【详解】
解:∵拐弯前、后的两条路平行,
∴∠B=∠C=150°(两直线平行,内错角相等).
故选:D.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
10、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
二、填空题
1、18°度
【分析】
根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.
【详解】
解:∵∠COE是直角,
∴∠COE=90°,
∵∠COF=36°,
∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,
∵OF平分∠AOE,
∴∠AOF=∠EOF=54°,
∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,
∴∠BOD=∠AOC=18°.
故答案为:18°.
【点睛】
本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
2、50°
【分析】
由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.
【详解】
解:∵AB∥CD∥EF,
∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,
∴∠ECD=180°-∠CEF=75°,
∴∠BCE=∠BCD-∠ECD=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.
3、0<l≤2
【分析】
根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.
【详解】
解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,
∵直线外一点与直线上各点连线的所有线段中,垂线段最短
∴点P到直线a的距离l小于等于2,
故答案为:0<l≤2.
【点睛】
本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.
4、40°
【分析】
根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
【详解】
∵AD∥BC,∠B=40°,
∴∠EAD=∠B=40°,
∵AD是∠EAC的平分线,
∴∠DAC=∠EAD=40°,
故答案为:40°
【点睛】
本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
5、,
【分析】
由,,可得再证明可得
【详解】
解: ,,
故答案为:
【点睛】
本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.
三、解答题
1、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
【分析】
由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
【详解】
∵AE∥BF,
∴∠EAB=∠FBG(两直线平行,同位角相等).
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD(等量代换),
∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
即∠1=∠2.
∴AC∥BD(同位角相等,两直线平行).
故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
2、(1)见解析;(2)150°
【分析】
(1)根据画角平分线的方法,画出角平分线即可;
(2)先求出的度数,然后由角平分线的定义,即可求出答案.
【详解】
解:(1)如图,OD即为平分线
(2)解:∵,
∴,
,
∴;
【点睛】
本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
3、(1)150°;(2)12或24;(3)存在,9秒、27秒
【分析】
(1)根据∠AOB=180°−∠AOM−∠BON计算即可.
(2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
(3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
【详解】
解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
(2)当重合时,
解得:
当0≤t≤18时:
4t+6t=120
解得:
当18≤t≤30时:则
4t+6t=180+60,
解得 t=24,
答:当∠AOB达到60°时,t的值为6或24秒.
(3) 当0≤t≤18时,由
180−4t−6t=90,
解得t=9,
当18≤t≤30时,同理可得:
4t+6t=180+90
解得t=27.
所以大于的答案不予讨论,
答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
【点睛】
本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
4、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
【分析】
利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
【详解】
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A=∠FEC(等量代换),
∴AB∥EF(同位角相等,两直线平行),
又∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
∴EF∥CD(平行于同一条直线的两直线互相平行),
∴∠FDG=∠EFD(两直线平行,内错角相等),
故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
5、(1)60,75;(2)秒;(3)3或12或21或30
【分析】
(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
【详解】
解:(1)∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=α=30°,
∴∠EOC=90°-30°=60°,
∠AOD=180°-30°=150°,
∵OF平分∠AOD,
∴∠FOD=∠AOD=×150°=75°;
故答案为:60,75;
(2)当,.
设当射线与射线重合时至少需要t秒,
可得,解得:;
答:当射线与射线重合时至少需要秒;
(3)设射线转动的时间为t秒,
由题意得:或或或,
解得:或12或21或30.
答:射线转动的时间为3或12或21或30秒.
【点睛】
本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
6、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
【分析】
三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
【详解】
(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
以第一个命题为例证明如下:
∵AB∥DE,
∴∠B=∠DOC.
∵BC∥EF,
∴∠DOC=∠E,
∴∠B=∠E.
【点睛】
本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
7、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【分析】
先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE.
【详解】
解∵∠1=60°(已知)
∠ABC=∠1 (对顶角相等),
∴∠ABC=60°(等量代换),
又∵∠2=120°(已知),
∴∠ABC+∠2=180°(等式的性质),
∴AB∥CD (同旁内角互补,两直线平行),
又∵∠2+∠BCD=180°,
∴∠BCD=60°(等式的性质),
∵∠D=60°(已知),
∴∠BCD=∠D (等量代换),
∴BC∥DE (内错角相等,两直线平行),
故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.
8、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE
【分析】
由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.
【详解】
①②③④作图如图所示;
⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;
⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;
⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;
⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.
【点睛】
本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.
9、(1)见解析;(2)∠B=38°.
【分析】
(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
【详解】
(1)∵AB∥DG,
∴∠BAD=∠1,
∵∠1+∠2=180°,
∴∠BAD+∠2=180°.
∵AD∥EF .
(2)∵∠1+∠2=180°且∠2=142°,
∴∠1=38°,
∵DG是∠ADC的平分线,
∴∠CDG=∠1=38°,
∵AB∥DG,
∴∠B=∠CDG=38°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
10、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
【详解】
解:(1)如图a,点P即为所求;
(2)如图b,点Q和线段CQ即为所求;
(3)如图c,线段CM即为所求.
【点睛】
本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
相关试卷
这是一份2021学年第十三章 相交线 平行线综合与测试课后复习题,共27页。试卷主要包含了如图,直线a,如图,∠1与∠2是同位角的是,如图,能与构成同位角的有等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题,共27页。试卷主要包含了下列说法中正确的有个,下列说法,下列关于画图的语句正确的是.,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共31页。
