终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含答案解析)
    立即下载
    加入资料篮
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含答案解析)01
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含答案解析)02
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含答案解析)03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试

    展开
    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共29页。试卷主要包含了如图,下列四个结论,下列说法,如图,直线AB等内容,欢迎下载使用。

    七年级数学第二学期第十三章相交线 平行线达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是(  )

    A.3.5 B.4 C.5 D.5.5
    2、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为(  )

    A.2α B.90°+α C.180°﹣α D.180°﹣2α
    3、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为(  )

    A.140° B.100° C.80° D.40°
    4、如图,下列四个结论:①∠1=∠3;②∠B=∠5;③∠B+∠BAD=180º;④∠2=∠4;⑤∠D+∠BCD=180º.能判断AB∥CD的个数有 ( )

    A.2个 B.3个 C.4个 D.5个
    5、下列说法:
    ①和为180°且有一条公共边的两个角是邻补角;
    ②过一点有且只有一条直线与已知直线垂直;
    ③同位角相等;
    ④经过直线外一点,有且只有一条直线与这条直线平行,
    其中正确的有( )
    A.0个 B.1个 C.2个 D.3个
    6、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设(  )
    A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
    7、若∠1与∠2是内错角,则它们之间的关系是 ( )
    A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
    8、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是(  )

    A.38° B.42° C.48° D.52°
    9、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )

    A.55° B.125° C.65° D.135°
    10、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )

    A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠E
    C.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、指出图中各对角的位置关系:
    (1)∠C和∠D是_____角;
    (2)∠B和∠GEF是____角;
    (3)∠A和∠D是____角;
    (4)∠AGE和∠BGE是____角;
    (5)∠CFD和∠AFB是____角.

    2、如图,A、B、C为直线l上的点,D为直线l外一点,若,则的度数为______.

    3、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______

    4、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.

    5、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,AB∥DG,∠1+∠2=180°.

    (1)试说明:AD∥EF;
    (2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
    2、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.

    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=  (   ).
    ∴AB∥  (   ).
    又∵∠1=∠2(已知),
    ∴AB∥CD (   ).
    ∴EF∥   (   ).
    ∴∠FDG=∠EFD (   ).
    3、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)

    4、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.

    (1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);
    (2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.
    5、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
    (1)如图a,在线段AB上找一点P,使PC+PD最小.
    (2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
    (3)如图c,画线段CM∥AB.要求点M在格点上.

    6、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
    (1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
    (2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.

    7、根据解答过程填空(写出推理理由或数学式):
    如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF(    ),
    ∴∠D=∠DCF(    ).
    ∵∠B=∠D(已知),
    ∴(    )=∠DCF(等量代换),
    ∴AB∥DC(    ).

    8、如图,平面上有三个点A、B、C.

    (1)根据下列语句按要求画图.
    ①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
    ②连接CA、CD、CB;
    ③过点C画CE⊥AD,垂足为点E;
    ④过点D画DF∥AC,交CB的延长线于点F.
    (2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
    ②用刻度尺或圆规检验DF与AC的大小关系为_________.
    9、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.

    (1)∵∠1=∠2(已知)
    ∴ CD( )
    ∴∠ABD+∠CDB = ( )
    (2)∵∠BAC =65°,∠ACD=115°,( 已知 )
    ∴∠BAC+∠ACD=180° (等式性质)
    ∴ABCD ( )
    (3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
    ∴∠ABD=∠CDF=90°( 垂直的定义)
    ∴ (同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = ( )
    10、已知AB∥CD,点是AB,CD之间的一点.
    (1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
    以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
    解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
    ∵AB∥CD(已知),
    ∴PE∥CD(    ),
    ∴∠BAE=∠1,∠DCE=∠2(    ),
    ∴∠BAE+∠DCE=   +   (等式的性质).
    即∠AEC,∠BAE,∠DCE之间的数量关系是    .
    (2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
    ①若∠AEC=74°,求∠AFC的大小;
    ②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.


    -参考答案-
    一、单选题
    1、D
    【分析】
    直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
    【详解】
    ∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
    ∵AB=3,
    ∴AC=5,
    ∴3≤AP≤5,
    故AP不可能是5.5,
    故选:D.
    【点睛】
    本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
    2、D
    【分析】
    由平行线的性质得,,由折叠的性质得,计算即可得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴,
    ∴,,
    ∵长方形纸带沿EF折叠,
    ∴,
    ∴.
    故选:D.
    【点睛】
    本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.
    3、B
    【分析】
    根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
    【详解】
    解:∵∠AOE+∠BOE=180°,
    ∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
    又∵OE平分∠AOC,
    ∴∠AOE=∠COE=40°,
    ∴∠BOC=∠BOE﹣∠COE
    =140°﹣40°
    =100°,
    故选:B.
    【点睛】
    本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
    4、A
    【分析】
    根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.
    【详解】
    解:①∵,∴,无法推出;
    ②∵,∴;
    ③∵,∴,无法推出;
    ④∵,∴;
    ⑤∵∴,无法推出,
    综上所述,能判断的是:②④,有2个,
    故选:A.
    【点睛】
    题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
    5、B
    【分析】
    根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
    【详解】
    解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;

    ②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
    ③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;

    ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
    其中正确的有④一共1个.
    故选择B.
    【点睛】
    本题考查基本概念的理解,掌握基本概念是解题关键.
    6、C
    【分析】
    用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
    【详解】
    解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
    用反证法时应假设结论不成立,
    即假设a与c不平行(或a与c相交).
    故答案为:C.
    【点睛】
    此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
    7、D
    【分析】
    根据内错角角的定义和平行线的性质判断即可.
    【详解】
    解:∵只有两直线平行时,内错角才可能相等,
    ∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
    三种情况都有可能,
    故选D.
    【点睛】
    本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
    8、A
    【分析】
    利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
    【详解】
    解:∵AB⊥AC,∠1=52°,
    ∴∠B=90°﹣∠1
    =90°﹣52°
    =38°
    ∵a∥b,
    ∴∠2=∠B=38°.
    故选:A.
    【点睛】
    本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
    9、B
    【分析】
    先根据余角的定义求得,进而根据邻补角的定义求得即可.
    【详解】
    EO⊥AB,∠EOC=35°,


    故选:B.
    【点睛】
    本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
    10、C
    【分析】
    如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.
    【详解】
    如图,过点C作CG∥AB,过点D作DH∥EF,
    ∴∠A=∠ACG,∠EDH=180°﹣∠E,
    ∵AB∥EF,
    ∴CG∥DH,
    ∴∠CDH=∠DCG,
    ∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),
    ∴∠A﹣∠ACD+∠CDE+∠E=180°.

    故选:C.
    【点睛】
    本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.
    二、填空题
    1、同旁内 同位 内错 邻补 对顶
    【分析】
    根据同位角,同旁内角,内错角,邻补角,对顶角的定义进行逐一判断即可.
    【详解】
    解:(1)∠C和∠D是同旁内角;
    (2)∠B和∠GEF是同位角;
    (3)∠A和∠D是内错角;
    (4)∠AGE和∠BGE是邻补角;
    (5)∠CFD和∠AFB是对顶角;
    故答案为:(1)同旁内 (2)同位 (3)内错 (4)邻补(5)对顶.
    【点睛】
    本题主要考查了同位角,同旁内角,内错角,邻补角,对顶角的定义,解题的关键在于能够熟知定义.
    2、60°度
    【分析】
    由邻补角的定义,结合,可得答案.
    【详解】
    解:

    故答案为:
    【点睛】
    本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.
    3、0<l≤2
    【分析】
    根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.
    【详解】
    解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,
    ∵直线外一点与直线上各点连线的所有线段中,垂线段最短
    ∴点P到直线a的距离l小于等于2,
    故答案为:0<l≤2.
    【点睛】
    本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.
    4、40°
    【分析】
    根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
    【详解】
    ∵AD∥BC,∠B=40°,
    ∴∠EAD=∠B=40°,
    ∵AD是∠EAC的平分线,
    ∴∠DAC=∠EAD=40°,
    故答案为:40°
    【点睛】
    本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
    5、,
    【分析】
    由,,可得再证明可得
    【详解】
    解: ,,





    故答案为:
    【点睛】
    本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.
    三、解答题
    1、(1)见解析;(2)∠B=38°.
    【分析】
    (1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
    (2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
    【详解】
    (1)∵AB∥DG,
    ∴∠BAD=∠1,
    ∵∠1+∠2=180°,
    ∴∠BAD+∠2=180°.
    ∵AD∥EF .
    (2)∵∠1+∠2=180°且∠2=142°,
    ∴∠1=38°,
    ∵DG是∠ADC的平分线,
    ∴∠CDG=∠1=38°,
    ∵AB∥DG,
    ∴∠B=∠CDG=38°.
    【点睛】
    本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
    2、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    3、3.15
    【分析】
    根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可
    【详解】
    解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,
    故答案为:3.15.
    【点睛】
    本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.
    4、(1);(2)∠ABC的度数改变,度数为.
    【分析】
    (1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;
    (2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.
    【详解】
    (1)如图1,过点作.

    ∵,
    ∴,
    ∴.
    ∵平分平分,,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)的度数改变.
    画出的图形如图2,过点作.

    ∵平分,平分,,
    ∴ .
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.
    5、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
    (2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
    (3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
    【详解】
    解:(1)如图a,点P即为所求;

    (2)如图b,点Q和线段CQ即为所求;


    (3)如图c,线段CM即为所求.
    【点睛】
    本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
    6、(1)见解析;(2)见解析.
    【分析】
    (1)利用两点之间距离线段最短,进而得出答案;
    (2)利用点到直线的距离垂线段最短,即可得出答案.
    【详解】
    解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,

    (2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
    【点睛】
    本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.
    7、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
    【分析】
    根据平行线的性质与判定条件完成证明过程即可.
    【详解】
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF(内错角相等,两直线平行),
    ∴∠D=∠DCF(两直线平行,内错角相等).
    ∵∠B=∠D(已知),
    ∴∠B=∠DCF(等量代换),
    ∴AB∥DC(同位角相等,两直线平行).
    故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.

    【点睛】
    本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
    8、(1)见解析;(2)①;垂线段最短;②相等
    【分析】
    (1)根据题意作图即可;
    (2)根据垂线段最短以及圆规进行检验即可.
    【详解】
    (1)如图所示,即为所求;

    (2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
    ②用圆规检验DF=AC.
    【点睛】
    本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.
    9、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
    【分析】
    (1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
    (2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
    (3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
    【详解】
    解:(1)∵∠1=∠2 (已知)
    ∴AB∥CD(内错角相等,两直线平行)
    ∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
    故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
    (2)∵∠BAC =65°,∠ACD=115°,(已知)
    ∴∠BAC+∠ACD=180° (等式性质 )
    ∴AB∥CD (同旁内角互补,两直线平行)
    故答案为:同旁内角互补,两直线平行;
    (3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
    ∴∠ABD=∠CDF=90°(垂直的定义)
    ∴AB ∥CD(同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = 125°.(两直线平行,同旁内角互补)
    故答案为:AB;CD;125°;两直线平行,同旁内角互补.
    【点睛】
    本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
    10、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
    【分析】
    (1)结合图形利用平行线的性质填空即可;
    (2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
    ②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
    【详解】
    解:(1)平行于同一条直线的两条直线平行,
    两直线平行,内错角相等,
    ∠1,∠2,
    ∠AEC=∠BAE+∠DCE,
    故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
    (2)①过F作FG∥AB,
    由(1)得:∠AEC=∠BAE+∠DCE,
    ∵AB∥CD,FG∥AB,
    ∴CD∥FG,
    ∴∠BAF=∠AFG,∠DCF=∠GFC,
    ∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
    ∵AF平分∠BAE,CF平分∠DCE,
    ∴∠BAF=∠BAE,∠DCF=∠DCE,
    ∴∠AFC=∠BAF+∠DCF,
    =∠BAE+∠DCE,
    =(∠BAE+∠DCE),
    =∠AEC,
    =×74°,
    =37°;

    ②由①得:∠AEC=2∠AFC,
    ∵∠AEC+∠AFC=126°,
    ∴2∠AFC+∠AFC=126°
    ∴3∠AFC=126°,
    ∴∠AFC=42°,∠AEC=84°,
    ∵CG⊥AF,
    ∴∠CGF=90°,
    ∴∠GCF=90-∠AFC=48°,
    ∵CE平分∠DCG,
    ∴∠GCE=∠ECD,
    ∵CF平分∠DCE,
    ∴∠DCE=2∠DCF=2∠ECF,
    ∴∠GCF=3∠DCF,
    ∴∠DCF=16°,
    ∴∠DCE=32°,
    ∴∠BAE=∠AEC﹣∠DCE=52°.

    【点睛】
    本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题: 这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共27页。试卷主要包含了下列说法,直线m外一点P它到直线的上点A,下列命题中,为真命题的是等内容,欢迎下载使用。

    初中数学第十三章 相交线 平行线综合与测试习题: 这是一份初中数学第十三章 相交线 平行线综合与测试习题,共25页。试卷主要包含了如图,下列四个结论,下列说法中,正确的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题: 这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共29页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map