初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测
展开沪教版(上海)七年级数学第二学期第十二章实数定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式中,化简结果正确的是( )
A. B. C. D.
2、的值等于( )
A. B.-2 C. D.2
3、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
4、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )
A.6cm B.12cm C.18cm D.24cm
5、三个实数,2,之间的大小关系( )
A.>>2 B.>2> C.2>> D.<2<
6、的相反数是( )
A. B. C. D.
7、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
8、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
9、已知2m﹣1和5﹣m是a的平方根,a是( )
A.9 B.81 C.9或81 D.2
10、在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有( )
A.2个 B.3个 C.4个 D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知x,y是实数,且+(y-3)2=0,则xy的立方根是__________.
2、按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.
3、计算:=___.
4、的平方根是________.
5、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.
三、解答题(10小题,每小题5分,共计50分)
1、求方程中x 的值(x﹣1)2 ﹣16 = 0
2、(1)计算
(2)计算
(3)解方程
(4)解方程组
3、计算:
(1);
(2).
4、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)
(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;
(2)已知两个“复合数”的差是42,求这两个“复合数”.
5、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.
例如:,和的十位数字相同,个位数字之和为,是“风雨数”.
又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.
(1)判断,是否是“风雨数”?并说明理由;
(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.
6、已知.
(1)求x与y的值;
(2)求x+y的算术平方根.
7、计算
(1)
(2)
8、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:
(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);
(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.
9、计算题
(1);
(2)(﹣1)2021+.
10、计算:.
-参考答案-
一、单选题
1、D
【分析】
根据实数的运算法则依次对选项化简再判断即可.
【详解】
A、,化简结果错误,与题意不符,故错误.
B、,化简结果错误,与题意不符,故错误.
C、,化简结果错误,与题意不符,故错误.
D、,化简结果正确,与题意相符,故正确.
故选:D .
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.
2、D
【分析】
由于表示4的算术平方根,由此即可得到结果.
【详解】
解:∵4的算术平方根为2,
∴的值为2.
故选D.
【点睛】
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.
3、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
4、D
【分析】
由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.
【详解】
解:∵每个小立方体的体积为216cm3,
∴小立方体的棱长,
由三视图可知,最高处有四个小立方体,
∴该几何体的最大高度是4×6=24cm,
故选D.
【点睛】
本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.
5、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
6、B
【分析】
直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.
【详解】
解:的相反数是;
故选:B.
【点睛】
本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.
7、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
8、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
9、C
【分析】
分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.
【详解】
解:若2m﹣1与5﹣m互为相反数,
则2m﹣1+5﹣m=0,
∴m=﹣4,
∴5﹣m=5﹣(﹣4)=9,
∴a=92=81,
若2m﹣1=5﹣m,
∴m=2,
∴5﹣m=5﹣2=3,
∴a=32=9,
故选C.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.
10、B
【分析】
根据“无限不循环的小数是无理数”可直接进行排除选项.
【详解】
解:∵,
∴在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有﹣,π,0.020020002…;共3个;
故选B.
【点睛】
本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.
二、填空题
1、
【分析】
根据二次根式和平方的非负性,可得 ,即可求解.
【详解】
解:根据题意得: ,
解得: ,
∴ .
故答案为:
【点睛】
本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键.
2、bc=a
【分析】
首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a÷b=c,据此解答即可.
【详解】
∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,
,,,,,,…,
∴a,b,c满足的关系式是a÷b=c,即bc=a.
故答案为:bc=a.
【点睛】
此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.
3、1
【分析】
根据平方和立方根的定义分别化简,再计算算术平方根即可.
【详解】
解:,
故答案为:1.
【点睛】
本题考查了实数的运算,解题的关键是掌握算术平方根和立方根的定义.
4、±
【分析】
直接根据平方根的定义求解即可.
【详解】
解:的平方根为±=±.
故答案为:±.
【点睛】
本题主要考查了平方根,知道一个正数有两个平方根是解决本题的关键.
5、44
【分析】
由已知条件的提示可得,即,从而可得答案.
【详解】
解:,
∴即
又∵,n为整数,
.
故答案为:44.
【点睛】
本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.
三、解答题
1、或
【分析】
根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
【详解】
解:(x﹣1)2 ﹣16 = 0
或
解得或
【点睛】
本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.
2、(1);(2);(3)或;(4).
【分析】
(1)先计算算术平方根与立方根,再计算加减法即可得;
(2)先化简绝对值,再计算实数的加减法即可得;
(3)利用平方根解方程即可得;
(4)利用加减消元法解二元一次方程组即可得.
【详解】
解:(1)原式
;
(2)原式
;
(3),
,
,
或;
(4),
由②①得:,
解得,
将代入①得:,
解得,
故方程组的解为.
【点睛】
本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.
3、(1)1;(2)2
【分析】
(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;
(2)根据同分母分式的加减法法则计算.
【详解】
解:(1)原式=1+2-2
=1.
(2)原式=
=
=2.
【点睛】
此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..
4、(1)12不是复合数;证明见解析;(2)98和56.
【分析】
(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;
(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.
【详解】
(1)12不是复合数,
∵找不到两个整数a,b,使a3﹣b3=12,
故12不是复合数,
设“正点”P所表示的数为x(x为正整数),
则a=x﹣1,b=x+1,
∴(x+1)3﹣(x﹣1)3
=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)
=2(3x2+1)
=6x2+2,
∴6x2+2﹣2=6x2一定能被6整除;
(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),
∵两个“复合数”的差是42,
∴(6m2+2)﹣(6n2+2)=42,
∴m2﹣n2=7,
∵m,n都是正整数,
∴,
∴,
∴6m2+2=98,6n2+2=56,
这两个“复合数”为98和56.
【点睛】
本题考查关于实数的新定义题型,理解新定义是解题的关键.
5、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或
【分析】
根据新定义的“风雨数”即可得出答案;
设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.
【详解】
解:,且,
是“风雨数”,
,,
不是“风雨数”;
设,则,
,,
能被整除,
,为整数,
,
是的倍数,
满足条件的有,,
若,则,为整数,
,
是的因数,
,,,,
满足条件的有,,,,
,或,或,或,,
或,
若,则,为整数,
,
是的因数,
,,,,,,,,
满足条件的有,,,,
,或,或,或,,
或,
综上,的值为或或或.
【点睛】
本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.
6、(1),;(2)2
【分析】
(1)根据绝对值和平方根的非负性求出x与y的值;
(2)先计算的值,即可得出的算术平方根.
【详解】
(1)由题可得:,
解得:,
∴,;
(2),
∵4的算术平方根为2,
∴的算术平方根为2.
【点睛】
本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.
7、(1);(2)
【分析】
(1)利用完全平方公式,平方差公式展开,合并同类项即可;
(2)根据幂的意义,算术平方根,立方根的定义计算.
【详解】
(1)
=
=;
(2)
=
=.
【点睛】
本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键.
8、(1)或;(2)9
【分析】
(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;
(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.
【详解】
解:(1) 大正方形的边长为
大正方形由两个小正方形与两个长方形组成,
(2)由(1)得:
a2+b2=57,ab=12,
则
【点睛】
本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.
9、(1)2+2;(2)4
【分析】
(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;
(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.
【详解】
解:(1)原式=2﹣2+|﹣4|
=2﹣2+4
=2+2;
(2)原式=﹣1+5
=4.
【点睛】
本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.
10、
【分析】
根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可
【详解】
原式=
=.
【点睛】
本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.
初中数学第十二章 实数综合与测试练习题: 这是一份初中数学第十二章 实数综合与测试练习题,共18页。试卷主要包含了在下列各数,下列各组数中相等的是,下列各数中,比小的数是,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共20页。试卷主要包含了4的平方根是,64的立方根为.,的算术平方根是,下列语句正确的是,化简计算﹣的结果是等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试课时作业: 这是一份数学七年级下册第十二章 实数综合与测试课时作业,共21页。试卷主要包含了观察下列算式,三个实数,2,之间的大小关系,的相反数是,对于两个有理数,下列运算正确的是等内容,欢迎下载使用。