搜索
    上传资料 赚现金
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)
    立即下载
    加入资料篮
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)01
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)02
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共24页。试卷主要包含了若,则的值为,若关于x的方程,下列说法正确的是,若,则整数a的值不可能为,若与互为相反数,则a等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数定向练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法正确的是(  )

    A.一个数的立方根有两个,它们互为相反数

    B.负数没有立方根

    C.任何数的立方根都只有一个

    D.如果一个数有立方根,那么这个数也一定有平方根

    2、的值等于(   

    A. B.-2 C. D.2

    3、下列各组数中相等的是(   

    A.和3.14 B.25%和 C.和0.625 D.13.2%和1.32

    4、若,则的值为(  

    A. B. C. D.

    5、若关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,则k的值为(  )

    A.9 B.﹣3 C.﹣3或3 D.3

    6、一个正方体的体积是5m3,则这个正方体的棱长是(  )

    A.m B.m C.25m D.125m

    7、下列说法正确的是(  

    A.=±2 B.27的立方根是±3 C.9的平方根是3 D.9的平方根是±3

    8、若,则整数a的值不可能为(   

    A.2 B.3 C.4 D.5

    9、若互为相反数,则ab的值为(   

    A. B. C. D.

    10、数轴上表示1,的对应点分别为AB,点B关于点A的对称点为C,则点C所表示的数是(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、若ab为实数,且,则ab的值______.

    2、如果,那么=_____.

    3、在﹣(﹣),﹣1,|3﹣π|,0这四个数中,最小的数是 _____.

    4、若是整数,则正整数的最小值是______.

    5、选用适当的不等号填空:﹣_____﹣π.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:.

    2、计算题:

    (1)

    (2)

    3、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.

    (1)对10进行1次操作后变为_______,对200进行3次作后变为_______;

    (2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;

    (3)若正整数m进行3次操作后变为1,求m的最大值.

    4、计算:

    5、已知abcd是有理数,对于任意,我们规定:

    例如:

    根据上述规定解决下列问题:

    (1)_________;

    (2)若,求的值;

    (3)已知,其中是小于10的正整数,若x是整数,求的值.

    6、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为

    参考小燕同学的做法,解答下列问题:

    (1)写出的小数部分为________;

    (2)已知的小数部分分别为ab,求a2+2abb2的值;

    (3)如果,其中x是整数,0<y<1,那么=________

    (4)设无理数m为正整数)的整数部分为n,那么的小数部分为________(用含mn的式子表示).

    7、求下列各式中的x

    (1)

    (2)

    8、如图是一个无理数筛选器的工作流程图.

    (1)当x为16时,y值为______;

    (2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;

    (3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?

    (4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.

    9、求下列各数的算术平方根:

    (1)0.64            (2)

    10、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:

    (1)写出一个假分式为:   

    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)

    (3)如果分式的值为整数,求x的整数值.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.

    【详解】

    解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,

    ∴A选项说法不正确;

    ∵一个负数有一个负的立方根,

    ∴B选项说法不正确;

    ∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,

    ∴C选项说法正确;

    ∵一个负数有一个负的立方根,但负数没有平方根,

    ∴D选项说法不正确.

    综上,说法正确的是C选项,

    故选:C.

    【点睛】

    本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.

    2、D

    【分析】

    由于表示4的算术平方根,由此即可得到结果.

    【详解】

    解:∵4的算术平方根为2,

    的值为2.

    故选D.

    【点睛】

    此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.

    3、B

    【分析】

    是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%==3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.

    【详解】

    解:A≈3.142,3.142>3.14,即>3.14;

    B=1÷4=0.25=25%=

    C=3÷8=0.375,0.375<0.625,即<0.625;

    D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.

    故选:B.

    【点睛】

    此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.

    4、C

    【分析】

    化简后利用平方根的定义求解即可.

    【详解】

    解:∵

    x2-9=55,

    x2=64,

    x=±8,

    故选C.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    5、B

    【分析】

    含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.

    【详解】

    解: 关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,

    由①得:

    由②得:

    所以:

    故选B

    【点睛】

    本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.

    6、B

    【分析】

    根据正方体的体积公式:Va3,把数据代入公式解答.

    【详解】

    解:××=5(立方米),

    答:这个正方体的棱长是米,

    故选:B.

    【点睛】

    此题主要考查正方体体积公式的灵活运用,关键是熟记公式.

    7、D

    【分析】

    根据平方根、立方根和算术平方根的性质计算即可;

    【详解】

    =2,故A错误;

    27的立方根是3,故B错误;

    9的平方根是±3,故C错误;

    9的平方根是±3,故D正确;

    故选D.

    【点睛】

    本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键.

    8、D

    【分析】

    首先确定的范围,然后求出整式a可能的值,判断求解即可.

    【详解】

    解:∵,即,即

    又∵

    ∴整数a可能的值为:2,3,4,

    ∴整数a的值不可能为5,

    故选:D.

    【点睛】

    此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.

    9、D

    【分析】

    首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.

    【详解】

    解:∵互为相反数,

    +=0,

    得:

    得:,解得:

    代入①得:,解得:

    故选:D.

    【点睛】

    此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于ab的方程组并求解.

    10、C

    【分析】

    首先根据数轴上表示1,的对应点分别为AB可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答.

    【详解】

    解:∵数轴上表示1,的对应点分别为AB

    AB−1,

    ∵点B关于点A的对称点为C

    ACAB

    ∴点C的坐标为:1−(−1)=2−

    故选:C

    【点睛】

    本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.

    二、填空题

    1、3

    【分析】

    根据平方的非负性及算术平方根的非负性求出ab的值,代入计算即可.

    【详解】

    解:∵

    =3,

    故答案为:3.

    【点睛】

    此题考查了平方的非负性及算术平方根的非负性,以及实数的乘方运算,正确掌握平方的非负性及算术平方根的非负性是解题的关键.

    2、

    【分析】

    本题可利用立方根的定义直接求解.

    【详解】

    故填:

    【点睛】

    本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.

    3、-1

    【分析】

    先运用去括号、去绝对值的知识化简各数,然后根据实数的大小比较法则解答即可.

    【详解】

    解∵﹣(﹣)=,﹣1,|3﹣π|=π-3,0,

    ∴−1<0<π-3<

    ∴这四个数中,最小的数是−1.

    故填:−1.

    【点睛】

    本题主要考查了实数的大小比较法则、去绝对值、去括号等知识点,正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.

    4、21

    【分析】

    ,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n

    【详解】

    ∴84n必须为21的整数的平方倍数,即,其中m为正整数

    m=1时,n最小,且最小值为21

    故答案为:21

    【点睛】

    本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.

    5、<

    【分析】

    先确定的取值范围,再利用实数比较大小的方法进行比较即可.

    【详解】

    解:∵

    ∴5<<6,

    >π,

    ∴﹣<﹣π,

    故答案为:<.

    【点睛】

    此题主要考查了实数的大小比较,关键是掌握正实数都大于0,负实数都小于0,正实数大于-切负实数,两个负实数绝对值大的反而小.

    三、解答题

    1、

    【分析】

    先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    2、

    (1)

    (2)

    【分析】

    (1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;

    (2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.

    (1)

    解:原式=

    (2)

    解:原式=

    【点睛】

    本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.

    3、(1)3;1;(2);(3)的最大值为255

    【详解】

    解:(1)∵

    ∴对10进行1次操作后变为3;

    同理可得

    同理可得

    同理可得

    ∴对200进行3次作后变为1,

    故答案为:3;1;

    (2)设m进行第一次操作后的数为x

    ∵要经过两次操作.

    故答案为:

    (3)设m经过第一次操作后的数为n,经过第二次操作后的数为x

    ∵要经过3次操作,故

    是整数.

    的最大值为255.

    【点睛】

    本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.

    4、2﹣π

    【分析】

    根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.

    【详解】

    解:

    =3﹣(π﹣)+(﹣1)﹣

    =3﹣π+﹣1﹣

    =2﹣π.

    【点睛】

    本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.

    5、

    (1)-5

    (2)

    (3)k=1,4,7.

    【分析】

    (1)根据规定代入数据求解即可;

    (2)根据规定代入整式,利用方程的思想求解即可;

    (3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.

    (1)

    解:

    (2)

    解:

    即:

    (3)

    解:

    即:

    因为是小于10的正整数且x是整数,

    所以k=1时,x=3;k=4时,x=4;k=7时,x=5.

    所以k=1,4,7.

    【点睛】

    本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.

    6、(1);(2)1;(3);(4)

    【分析】

    (1)由题意易得,则有的整数部分为3,然后问题可求解;

    (2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;

    (3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;

    (4)根据题意可直接进行求解.

    【详解】

    解:(1)∵

    的整数部分为3,

    的小数部分为

    故答案为

    (2)∵

    的小数部分分别为ab

    (3)由可知

    的小数部分为

    x是整数,0<y<1,

    故答案为

    (4)∵无理数m为正整数)的整数部分为n

    的小数部分为

    的小数部分即为的小数部分加1,为

    故答案为

    【点睛】

    本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.

    7、

    (1)

    (2)

    【分析】

    (1)根据平方根定义开方,求出两个方程的解即可;

    (2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.

    (1)

    开平方得,

    解得,

    (2)

    移项得,

    方程两边同除以8,得,

    开立方,得,

    【点睛】

    本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.

    8、

    (1)

    (2)0,1

    (3)x<0

    (4)x=3或x=9或x=81.

    【分析】

    (1)根据运算规则即可求解;

    (2)根据0的算术平方根是0,即可判断;

    (3)根据二次根式有意义的条件,被开方数是非负数即可求解;

    (4)根据运算法则,进行逆运算即可求得无数个满足条件的数.

    (1)

    解:当x=16时,,则y=

    故答案是:

    (2)

    解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;

    (3)

    解:当x<0时,导致开平方运算无法进行;

    (4)

    解: x的值不唯一.x=3或x=9或x=81.

    【点睛】

    本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.

    9、 (1) 0.8; (2)

    【分析】

    根据算术平方根的定义求解即可.

    【详解】

    解:(1)因为0.82=0.64,

    所以0.64的算术平方根是0.8,即=0.8.

    (2)因为

    所以的算术平方根是,即

    【点睛】

    本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.

    10、(1);(2)1+;(3)x=0,1,3,4

    【分析】

    (1)根据定义即可求出答案.

    (2)根据题意给出的变形方法即可求出答案.

    (3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.

    【详解】

    解:(1)根据题意,是一个假分式;

    故答案为:(答案不唯一).

    (2)

    故答案为:

    (3)∵

    x2=±1或x2=±2,

    x=0,1,3,4;

    【点睛】

    本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了在下列各数,若与互为相反数,则a,估计的值在,a为有理数,定义运算符号▽等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共21页。试卷主要包含了下列运算正确的是,下列计算正确的是.,下列说法,如果a,已知a=,b=-|-|,c=等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了如果a,若,则的值为,下列各式中,化简结果正确的是,下列各数是无理数的是,下列各数中,比小的数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map