![2022年最新沪教版(上海)七年级数学第二学期第十二章实数定向攻克练习题(无超纲)01](http://img-preview.51jiaoxi.com/2/3/12706787/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十二章实数定向攻克练习题(无超纲)02](http://img-preview.51jiaoxi.com/2/3/12706787/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十二章实数定向攻克练习题(无超纲)03](http://img-preview.51jiaoxi.com/2/3/12706787/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题
展开沪教版(上海)七年级数学第二学期第十二章实数定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,则k的值为( )
A.9 B.﹣3 C.﹣3或3 D.3
2、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2 B.3 C.4 D.5
3、下列整数中,与-1最接近的是( )
A.2 B.3 C.4 D.5
4、下列语句正确的是( )
A.8的立方根是2 B.﹣3是27的立方根
C.的立方根是± D.(﹣1)2的立方根是﹣1
5、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
6、已知a=,b=-|-|,c=(-2)3,则a,b,c的大小关系是( )
A.b<a<c B.b<c<a C.c<b<a D.a<c<b
7、可以表示( )
A.0.2的平方根 B.的算术平方根
C.0.2的负的平方根 D.的立方根
8、若一个数的算术平方根与它的立方根的值相同,则这个数是( )
A.1 B.0和1 C.0 D.非负数
9、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
10、实数2,0,﹣3,﹣中,最小的数是( )
A.﹣3 B.﹣ C.2 D.0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.
2、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日.请写出你喜欢的一个“平方根节”(题中所举的例子除外)______年_____月_______日.
3、的算术平方根是________,的平方根是__________,-8的立方根是_________,
4、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.
5、已知ab,a,b为两个连续的自然数,则a+b=_____.
三、解答题(10小题,每小题5分,共计50分)
1、求下列各数的立方根:
(1)729
(2)
(3)
(4)
2、运算,满足
(1)求的值;
(2)求的值.
3、计算
4、计算:
5、计算:(1);
(2).
6、计算:
(1)
(2)
7、已知:,求x+17的算术平方根.
8、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);
(2)解方程:=﹣1.
9、计算题
(1);
(2)(﹣1)2021+.
10、先化简:,再从中选取一个合适的整数代入求值.
-参考答案-
一、单选题
1、B
【分析】
含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.
【详解】
解: 关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,
由①得:
由②得:
所以:
故选B
【点睛】
本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.
2、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
3、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
4、A
【分析】
利用立方根的运算法则,进行判断分析即可.
【详解】
解:A、8的立方根是2,故A正确.
B、3是27的立方根,故B错误.
C、的立方根是,故C错误.
D、(﹣1)2的立方根是1,故D错误.
故选:A.
【点睛】
本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.
5、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
6、C
【分析】
本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.
【详解】
解:由题意得:a===4,b==,c==-8,
∴c<b<a.
故选:C.
【点睛】
本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.
7、C
【分析】
根据平方根和算术平方根的定义解答即可.
【详解】
解:可以表示0.2的负的平方根,
故选:C.
【点睛】
此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.
8、B
【分析】
根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.
【详解】
解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,
∴一个数的算术平方根与它的立方根的值相同的是0和1,
故选B.
【点睛】
主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.
9、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
10、A
【分析】
根据实数的性质即可判断大小.
【详解】
解:∵﹣3<﹣<0<2
故选A.
【点睛】
此题主要考查实数的大小比较,解题的关键是熟知实数的性质.
二、填空题
1、44
【分析】
由已知条件的提示可得,即,从而可得答案.
【详解】
解:,
∴即
又∵,n为整数,
.
故答案为:44.
【点睛】
本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.
2、2025 5 5
【分析】
首先确定月份和日子,最后确定年份即可.(答案不唯一).
【详解】
解:2025年5月5日.(答案不唯一).
故答案是:2025,5,5.
【点睛】
本题考查了平方根的应用,解题的关键是正确理解三个数字的关系.
3、5 ±3 -2
【分析】
根据算术平方根、平方根、立方根的定义即可求解.
【详解】
解:=25
∴算术平方根是5
=9,
∴的平方根是±3
-8的立方根是-2
故答案为:5;±3;-2.
【点睛】
此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.
4、或4
【分析】
先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.
【详解】
解:由题意得:,即,
,
或,
解得或,
故答案为:或4.
【点睛】
本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.
5、9
【分析】
利用已知得出a,b的值,进而求出a+b的平方根.
【详解】
解:∵a、b是两个连续的自然数,
,
∴a=4,b=5,
则 ,
故的值为9.
故答案为:9.
【点睛】
此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.
三、解答题
1、(1)9;(2);(3);(4)-5
【分析】
根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.
【详解】
解:(1)因为93=729,
所以729的立方根是9,即;
(2),因为,
所以的立方根是,即;
(3)因为,
所以的立方根是,即;
(4).
【点睛】
本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.
2、
(1)-10
(2)-22
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.
3、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
4、-10
【分析】
根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.
【详解】
解:,
,
.
【点睛】
本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.
5、(1);(2).
【分析】
(1)由题意利用算术平方根和立方根的性质进行化简计算即可;
(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.
【详解】
解:(1)
(2)
【点睛】
本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.
6、(1);(2)
【分析】
(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;
(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.
【详解】
解:(1)
=
=
=;
(2)
=
=
=.
【点睛】
本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.
7、3
【分析】
首先根据,求出x的值,然后代入x+17求解算术平方根即可.
【详解】
解:∵,
∴5x+32=-8,
解得:x=-8,
∴x+17=-8+17=9,
∵9的算术平方根为3,
∴x+17的算术平方根为 3,
故答案为:3.
【点睛】
此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.
8、(1)-7;(2)x=9.
【分析】
(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;
(2)直接去分母,移项合并同类项解方程即可.
【详解】
解:(1)原式=﹣9﹣1+2﹣9×(﹣)
=﹣9﹣1+2+1
=﹣7;
(2)去分母得:2x﹣3(1+x)=﹣12,
去括号得:2x﹣3﹣3x=﹣12,
移项得:2x﹣3x=﹣12+3,
合并同类项得:﹣x=﹣9,
系数化1得:x=9.
【点睛】
此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.
9、(1)2+2;(2)4
【分析】
(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;
(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.
【详解】
解:(1)原式=2﹣2+|﹣4|
=2﹣2+4
=2+2;
(2)原式=﹣1+5
=4.
【点睛】
本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.
10、∴或933或925或91
【点睛】
本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出a、b、y的值是解答的关键.
7.2x-2,2.
【分析】
根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.
【详解】
解:原式=,
∵,x取整数,
∴x可取2,
当x=2时,原式=2×2-2=2.
【点睛】
本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了在下列各数,若与互为相反数,则a,估计的值在,a为有理数,定义运算符号▽等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。
七年级下册第十二章 实数综合与测试同步测试题: 这是一份七年级下册第十二章 实数综合与测试同步测试题,共20页。试卷主要包含了下列各数中,比小的数是,如果a,9的平方根是,的算术平方根是,0.64的平方根是,下列说法正确的是等内容,欢迎下载使用。