北京课改版八年级下册第十五章 四边形综合与测试随堂练习题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共27页。
京改版八年级数学下册第十五章四边形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )
A. B. C. D.
2、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120° B.118° C.110° D.108°
3、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为( )
A.16 B.24 C.32 D.40
4、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )
A.三角形 B.四边形 C.五边形 D.六边形
5、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
6、下列测量方案中,能确定四边形门框为矩形的是( )
A.测量对角线是否互相平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
7、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
8、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是( )
A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④
9、下列四个图案中,是中心对称图形的是( )
A. B.
C. D.
10、下列图案中,是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为 _____.
2、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.
3、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.
4、正方形的一条对角线长为4,则这个正方形面积是_________.
5、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC于点M.
(1)求证:BE=FM;
(2)求BE的长度.
2、已知:如图,在中,,,.
求证:互相平分.
如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4
(1)判断△ACF的形状,并说明理由;
(2)求△ACF的面积;
3、如图,△AOB是等腰直角三角形.
(1)若A(﹣4,1),求点B的坐标;
(2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;
(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.
4、如图,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);
(2)求证:四边形CEDF是矩形.
5、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.
-参考答案-
一、单选题
1、C
【分析】
由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
解: 矩形ABCD,
设BE=x,
∵AE为折痕,
∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,
∴Rt△EFC中,,EC=2-x,
∴,
解得:,
则点E到点B的距离为:.
故选:C.
【点睛】
本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
2、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
3、C
【分析】
由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.
【详解】
∵D,E分别是AB,AC的中点,
∴AE=CE,AD=BD,DE为△ABC的中位线,
∴DE//BC,DE=BC,
∵∠ABC=90°,
∴∠ADE=∠ABC=90°,
在△MBD和△EDA中,,
∴△MBD≌△EDA,
∴MD=AE,DE=MB,
∵DE//MB,
∴四边形DMBE是平行四边形,
∴MD=BE,
∵AC=18,BC=14,
∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.
故选:C.
【点睛】
本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
4、A
【分析】
多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.
【详解】
解:多边形的外角和是360度,
又多边形的外角和是内角和的2倍,
多边形的内角和是180度,
这个多边形是三角形.
故选:A.
【点睛】
考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.
5、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
6、D
【分析】
由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
【详解】
解:A、∵对角线互相平分的四边形是平行四边形,
∴对角线互相平分且相等的四边形才是矩形,
∴选项A不符合题意;
B、∵两组对边分别相等是平行四边形,
∴选项B不符合题意;
C、∵对角线互相平分且相等的四边形才是矩形,
∴对角线相等的四边形不是矩形,
∴选项C不符合题意;
D、∵对角线交点到四个顶点的距离都相等,
∴对角线互相平分且相等,
∵对角线互相平分且相等的四边形是矩形,
∴选项D符合题意;
故选:D.
【点睛】
本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
7、A
【分析】
根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
【详解】
解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
A选项是中心对称图形.故本选项正确.
故选:A.
【点睛】
本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
8、C
【分析】
根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.
【详解】
解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.
B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.
C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.
D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.
故选:C.
【点睛】
本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.
9、A
【分析】
中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
【详解】
解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
故选:A.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
10、B
【分析】
由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
【详解】
解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
故选:B.
【点睛】
本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、①②③④
【分析】
①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF=60°,再利用角的等量代换,即可得出结论①正确;
②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;
③通过等量代换即可得出结论③正确;
④延长OE至,使=OD,连接,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论④正确;
【详解】
解:①设与的交点为如图所示:
∵∠DAC=60°,OD=OA,
∴△OAD为等边三角形,
∴∠DOA=∠DAO=∠ADO =60°,
∵△DFE为等边三角形,
∴∠DEF=60°,
∴∠DOA=∠DEF=60°,
∴,
∴
故结论①正确;
②如图,连接OE,
在△DAF和△DOE中,
,
∴△DAF≌△DOE(SAS),
∴∠DOE=∠DAF=60°,
∵∠COD=180°﹣∠AOD=120°,
∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,
∴∠COE=∠DOE,
在△ODE和△OCE中,
,
∴△ODE≌△OCE(SAS),
∴ED=EC,∠OCE=∠ODE,
故结论②正确;
③∵∠ODE=∠ADF,
∴∠ADF=∠OCE,即∠ADF=∠ECF,
故结论③正确;
④如图,延长OE至,使=OD,连接,
∵△DAF≌△DOE,∠DOE=60°,
∴点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,
∵
∴
设,则
∴在中,
即
解得:
∴=OD=AD=,
∴点E运动的路程是,
故结论④正确;
故答案为:①②③④.
【点睛】
本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.
2、5
【分析】
直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.
【详解】
解:在直角三角形中,两直角边长分别为6和8,
则斜边长==10,
∴斜边中线长为×10=5,
故答案为 5.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.
3、
【分析】
利用平行四边形的性质:邻角互补,对角相等,即可求得答案.
【详解】
解:在平行四边形ABCD中,、是的邻角,是的对角,
,,
故答案为: ,,.
【点睛】
本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.
4、8
【分析】
正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.
【详解】
解:设边长为,对角线为
故答案为:.
【点睛】
本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.
5、4
【分析】
过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.
【详解】
如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,
∵四边形ABCD的对角线交点为O,
∴OA=OC,∠ABC=90°,AB=BC,
∴OG∥BC,OH∥AB,
∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,
∴=4,
∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,
∴∠FOH=∠EOG,
∵∠OGE=∠OHF=90°,OG=OH,
∴△OGE≌△OHF,
∴,
∴,
∴=4,
故答案为:4.
【点睛】
本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.
三、解答题
1、(1)见解析;(2)—4
【分析】
(1)由旋转和正方形的性质得出∠FAM=∠EAB,再证≌即可;
(2)求出正方形对角线长,再求出MC=—4即可.
【详解】
(1)证明:在正方形ABCD中,线段AE绕点A逆时针旋转45°得到线段AF
∠CAB=45°,∠EAF=45°,AE=AF
∠FAM=∠EAB
∵FM⊥AC
∠FMA=∠B=90°
≌(AAS)
BE=FM
(2)在正方形ABCD中,边长为4
AC=,∠DCA=45°
≌
∴AM=AB=4
MC=AC—AM=—4
∵是等腰直角三角形
BE=MF=MC=—4
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,解题关键是熟练运用正方形的性质和全等三角形的判定进行证明推理.
2、证明见解析
【分析】
连接,由三角形中位线定理可得,,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;
【详解】
证明:连接,
∵AD=DB,BE=EC,
∴,
∵BE=EC,AF=FC,
∴,
∴四边形ADEF是平行四边形,
∴AE,DF互相平分.
【点睛】
本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.
(1)△ACF是等腰三角形,理由见解析;(2)10;(3)
3、(1)(1,4);(2)45°;(3)见解析
【分析】
(1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);
(2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;
(3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;
【详解】
解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
∴∠AEO=∠OFB=90°,
∴∠AOE+∠OAE=90°,
又∵∠AOB=90°,
∴∠AOE+∠BOF=90°,
∴∠OAE=∠BOF,
∵AO=OB,
∴△OAE≌△BOF(AAS),
∴OF=AE,BF=OE,
∵点A的坐标为(-4,1),
∴OF=AE=1,BF=OE=4,
∴点B的坐标为(1,4);
(2)如图所示,延长MP与AN交于H,
∵AH⊥y轴,BM⊥y轴,
∴BM∥AN,
∴∠MBP=∠HAP,∠AHP=∠BMP,
∵点P是AB的中点,
∴AP=BP,
∴△APH≌△BPM(AAS),
∴AH=BM,
∵A点坐标为(-4,1),B点坐标为(1,4),
∴AN=4,OM=4,BM=1,ON=1,
∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,
∴HN=MN,
∴∠NHM=∠NMH=45°,即∠PMO=45°;
(3)如图所示,连接OP,AM,取BM中点G,连接GP,
∴GP是△ABM的中位线,
∴AM∥GP,
∵Q是ON的中点,G是BM的中点,ON=BM=1,
∴,
∵P是AB中点,△AOB是等腰直角三角形,∠AOB=90°,
∴,∠OAB=∠OBA=45°,∠OPB=90°
∴∠PAO=∠POA=45°,
∴∠POB=45°,
∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,
∴∠NAO=∠BON,
∵∠OAB=∠POB=45°,
∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,
由(2)得∠GBP=∠BAN,
∴∠GBP=∠QOP,
∴△PQO≌△PGB(SAS),
∴∠OPQ=∠BPG,
∵∠OPQ+∠BPQ=90°,
∴∠BPG+∠BPQ=90°,即∠GPQ=90°,
∴PQ⊥PG,
∴PG⊥AM;
【点睛】
本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
4、(1)见解析(2)见解析
【分析】
(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.
(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.
【详解】
(1)答案如下图所示:
分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.
(2)证明:点是AB与其垂直平分线l的交点,
点是AB的中点,
是Rt△ABC上的斜边的中线,
,
DE、DF分别是ADC,∠BDC的角平分线,
,,
,
,
,
,
,
在四边形CEDF中,,
四边形CEDF是矩形.
【点睛】
本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.
5、(1)见解析;(2)正方形ABCD的面积为
【分析】
(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;
(2)证明菱形ABCD是正方形,即可得出答案.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AO=OC,
∵△ACE是等边三角形,
∴EO⊥AC (三线合一),
即BD⊥AC,
∴▱ABCD是菱形;
(2)解:∵△ACE是等边三角形,
∴∠EAC=60°
由(1)知,EO⊥AC,AO=OC
∴∠AEO=∠OEC=30°,△AOE是直角三角形,
∵∠AED=2∠EAD,
∴∠EAD=15°,
∴∠DAO=∠EAO﹣∠EAD=45°,
∵▱ABCD是菱形,
∴∠BAD=2∠DAO=90°,
∴菱形ABCD是正方形,
∴正方形ABCD的面积=AB2=a2.
【点睛】
本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键.
相关试卷
这是一份初中数学第十五章 四边形综合与测试精练,共26页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。