初中北京课改版第十五章 四边形综合与测试测试题
展开这是一份初中北京课改版第十五章 四边形综合与测试测试题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平行四边形中,,则的度数是( )
A. B. C. D.
2、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )
A.20º B.25º C.30º D.35º
3、下列图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4、在平面直角坐标系中,点关于原点对称的点的坐标是( )
A. B. C. D.
5、下列图案中,是中心对称图形的是( )
A. B. C. D.
6、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )
A.梯形的下底是上底的两倍 B.梯形最大角是
C.梯形的腰与上底相等 D.梯形的底角是
7、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )
A. B. C. D.
8、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
9、下列图形中,既是轴对称图形又是中心对称图形的是( ).
A. B.
C. D.
10、已知正多边形的一个外角等于45°,则该正多边形的内角和为( )
A.135° B.360° C.1080° D.1440°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.
2、如图,的度数为_______.
3、如图,在四边形中,,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_______.
4、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.
(1)以点E,O,F,D为顶点的图形的面积为________________;
(2)线段EF的最小值是_______________.
5、已知一个多边形内角和1800度,则这个多边形的边数_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.
2、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.
(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状 ,并直接写出它的面积 .
3、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD=5,DB=13,求BE的长.
4、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.
(1)证明:无论M,N怎样移动,△BMN总是等边三角形;
(2)求△BMN面积的最小值.
5、△ABC和△GEF都是等边三角形.
问题背景:如图1,点E与点C重合且B、C、G三点共线.此时△BFC可以看作是△AGC经过平移、轴对称或旋转得到.请直接写出得到△BFC的过程.
迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为△ABC中线CD上一点,延长GF交BC于点H,求证:.
联系拓展:如图3,AB=12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列).当最小时,则△MDG的面积为_______.
-参考答案-
一、单选题
1、B
【分析】
根据平行四边形对角相等,即可求出的度数.
【详解】
解:如图所示,
∵四边形是平行四边形,
∴,
∴,
∴.
故:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
2、C
【分析】
依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.
【详解】
∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.
【点睛】
考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.
3、B
【详解】
A.是轴对称图形,不是中心对称图形,故不符合题意;
B. 既是轴对称图形,又是中心对称图形,故符合题意;
C.是轴对称图形,不是中心对称图形,故不符合题意;
D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
故选B
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
4、A
【分析】
关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
【详解】
解:点关于原点对称的点的坐标是:
故选A
【点睛】
本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
5、B
【分析】
由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
【详解】
解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
故选:B.
【点睛】
本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、D
【分析】
如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项.
【详解】
解:如图,,
,
,
,
梯形是等腰梯形,
,
则梯形最大角是,选项B正确;
没有指明哪个角是底角,
梯形的底角是或,选项D错误;
如图,连接,
,
是等边三角形,
,
,
点共线,
,
,
,
四边形是平行四边形,
,
,
,
,,
四边形是菱形,
,
,,选项A、C正确;
故选:D.
【点睛】
本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.
7、C
【分析】
由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
解: 矩形ABCD,
设BE=x,
∵AE为折痕,
∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,
∴Rt△EFC中,,EC=2-x,
∴,
解得:,
则点E到点B的距离为:.
故选:C.
【点睛】
本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
8、B
【详解】
解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、不是轴对称图形,是中心对称图形,故本选项不符合题意;
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
9、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、C
【分析】
先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.
【详解】
解: 正多边形的一个外角等于45°,
这个正多边形的边数为:
这个多边形的内角和为:
故选C
【点睛】
本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.
二、填空题
1、-1
【分析】
根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.
【详解】
解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,
∴m=﹣2021,n=2020,
∴m+n=﹣1.
故答案为:-1.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
2、
【分析】
根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.
【详解】
解:如图,
∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为:.
【点睛】
本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
3、4
【分析】
根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EM∥AB,FM∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可.
【详解】
解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,
∵∠ABC+∠DCB=90°,
∵E、F、M分别是AD、BC、BD的中点,
∴EM=AB,FM=CD,EM∥AB,FM∥CD,
∴∠ABC=∠ENC,∠MFN=∠C,
∴∠MNF+∠MFN=90°,
∴∠NMF=180°-90°=90°,
∴∠EMF=90°,
由勾股定理得:ME2+FM2=EF2,
∴阴影部分的面积是:π(ME2+FM2)=EF2π=8π,
∴EF=4.
故答案为:4.
【点睛】
本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键.
4、1
【分析】
(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;
(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.
【详解】
解:(1)连接OA、OD,
∵四边形ABCD是正方形,
∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,
∴∠AOE+∠DOE=90°,
∵OE⊥OF,
∴∠DOF+∠DOE=90°,
∴∠AOE=∠DOF,
在△OAE和△ODF中,
,
∴△OAE≌△ODF(ASA),
∴S△OAE=S△ODF,
∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,
∵AD=2,
∴S四边形EOFD= ×4=1,
故答案为:1;
(2)∵△OAE≌△ODF,
∴OE=OF,
∴△EOF为等腰直角三角形,则EF=OE,
当OE⊥AD时OE最小,即EF最小,
∵OA=OD,∠AOD=90°,
∴OE=AD=1,
∴EF的最小值,
故答案为:.
【点睛】
本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.
5、12
【分析】
设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.
【详解】
解:设这个多边形的边数是n,
依题意得,
∴,
∴.
故答案为:12.
【点睛】
考查了多边形的内角和定理,关键是根据n边形的内角和为解答.
三、解答题
1、见解析
【分析】
首先根据平行四边形的性质推出AD=CB,AD∥BC,得到∠ADE=∠CBF,从而证明△ADE≌△CBF,得到∠AED=∠CFB,即可证明结论.
【详解】
证:∵四边形ABCD是平行四边形,
∴AD=CB,AD∥BC,
∴∠ADE=∠CBF,
在△ADE和△CBF中,
∴△ADE≌△CBF(SAS),
∴∠AED=∠CFB,
∴AE∥CF.
【点睛】
本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键.
2、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.
【分析】
(1)PB=x,PC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;
(2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;
(3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2∥N1N2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.
【详解】
解:(1)∵四边形ABCD为矩形,
∴DC=AB=9,AD=BC=12.
∵DG=5,
∴GC=4.
∵PB=x,PC=12-x,
∴y=9×12-×9×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.
当y=34时,-2.5x+54=34,解得x=8;
(2)存在.
∵PB=x,PC=12-x,AD=12,DG=5,
∴PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.
∵当AG2=AP2+PG2时,AP⊥PG,
∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,
解得:x=6;
(3)如图所示:
∵当点P与点B重合时,点M位于M1处,点N位于点N1处,
∴M1为AB的中点,点N1位GB的中点.
∵当点P与点C重合时,点M位于M2处,点N位于点N2处,
∴M2为AC的中点,点N2位CG的中点.
∴M1M2∥BC,M1M2=BC,N1N2∥BC,N1N2=BC.
∴M1M2∥N1N2,N1N2=M1M2.
∴四边形M1M2N2N1为平行四边形.
∴MN扫过的区域为平行四边形.
S=BC•(AB-CG)=6×2.5=15,
故答案为:平行四边形;15.
【点睛】
本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.
3、
【分析】
由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE,依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.
【详解】
解:∵四边形ABCD为矩形,
∴AB=CD,∠A=∠C=90°
∵由翻折的性质可知∠F=∠A,BF=AB,
∴BF=DC,∠F=∠C.
在△DCE与△BEF中,
∴△DCE≌△BFE.
在Rt△BDC中,由勾股定理得:BC=.
∵△DCE≌△BFE,
∴BE=DE.
设BE=DE=x,则EC=12−x.
在Rt△CDE中,CE2+CD2=DE2,即(12−x)2+52=x2.
解得:x=.
∴BE=.
【点睛】
本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键.
4、(1)见解析;(2)△BMN面积的最小值为
【分析】
(1)连接BD,证明△AMB≌△DNB,则可得BM=BN,∠MBA=∠NBD,由菱形的性质易得∠MBN=60゜,从而可证得结论成立;
(2)过点B作BE⊥MN于点E.
【详解】
(1)证明:如图所示,连接BD,
在菱形ABCD中,∠DAB=60°,
∴∠ADB=∠NDB=60°,
故△ADB是等边三角形,
∴AB=BD,
又AM+CN=1,DN+CN=1,
∴AM=DN,
在△AMB和△DNB中,
,
∴△AMB≌△DNB(SAS),
∴BM=BN,∠MBA=∠NBD,
又∠MBA+∠DBM=60°,
∴∠NBD+∠DBM=60°,
即∠MBN=60°,
∴△BMN是等边三角形;
(2)过点B作BE⊥MN于点E.
设BM=BN=MN=x,
则,
故,
∴当BM⊥AD时,x最小,
此时,,
.
∴△BMN面积的最小值为.
【点睛】
本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等.
5、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3).
【分析】
(1)只需要利用SAS证明△BCF≌△ACG即可得到答案;
(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FM⊥BC于M,求出,即可推出,则,即:;
法二:过F作,.先证明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则;
(3)如图3-1所示,连接,GM,AG,先证明△ADE是等边三角形,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动.过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQ⊥AB于Q,连接DG,求出DM和QG的长即可求解.
【详解】
(1)∵△ABC和△GEF都是等边三角形,
∴BC=AC,CF=CG,∠ACB=∠FCG=60°,
∴∠ACB+∠ACF=∠FCG+∠ACF,
∴∠FCB=∠GCA,
∴△BCF≌△ACG(SAS),
∴△BFC可以看作是△AGC绕点C逆时针旋转60度所得;
(2)法一:
证明:以为边作,与的延长线交于点K,如图,
∵和均为等边三角形,
∴,∠GFE=60°,
∴,
∴∠EFH+∠ACB=180°,
∴,
∵,
∴.
∵是等边的中线,
∴,
∴,
∴
∴.
在与中,
∴,
∴,
∴,
过点F作FM⊥BC于M,
∴KM=CM,
∵∠K=30°,
∴
∴,
∴,
∴,即:;
法二
证明:过F作,.
∴是等边的中线,
∴,,
∴△FCN≌△FCM(AAS),FC=2FN,
∴CM=CN,,
同法一,.
在与中,
∴
∴,
∴;
(3)如图3-1所示,连接,GM,AG,
∵D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,CD⊥AB,
∴DE∥BC,∠CDA=90°,
∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,
∴△ADE是等边三角形,∠FDE=30°,
∴DE=AE,
∵△GEF是等边三角形,
∴EF=EG,∠GEF=60°,
∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,
∴
∴,即点G在的角平分线所在直线上运动.
过G作,则,
∴最小即是最小,
∴当M、G、P三点共线时,最小
如图3-2所示,过点G作GQ⊥AB于Q,连接DG,
∴QG=PG,
∵∠MAP=60°,∠MPA=90°,
∴∠AMP=30°,
∴AM=2AP,
∵D是AB的中点,AB=12,
∴AD=BD=6,
∵M是BD靠近B点的三等分点,
∴MD=4,
∴AM=10,
∴AP=5,
又∵∠PAG=30°,
∴AG=2GP,
∵,
∴
∴
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试课后测评,共21页。试卷主要包含了下列∠A等内容,欢迎下载使用。
这是一份数学八年级下册第十五章 四边形综合与测试课后练习题,共25页。试卷主要包含了下列命题是真命题的是,平行四边形中,,则的度数是等内容,欢迎下载使用。