年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十五章四边形必考点解析试题(含答案及详细解析)

    立即下载
    加入资料篮
    精品试卷京改版八年级数学下册第十五章四边形必考点解析试题(含答案及详细解析)第1页
    精品试卷京改版八年级数学下册第十五章四边形必考点解析试题(含答案及详细解析)第2页
    精品试卷京改版八年级数学下册第十五章四边形必考点解析试题(含答案及详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共29页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )

    A.1 B.2 C.3 D.4
    2、下列图形中,是中心对称图形的是(  )
    A. B.
    C. D.
    3、下列图形中,既是中心对称图形也是轴对称图形的是( )
    A.圆 B.平行四边形 C.直角三角形 D.等边三角形
    4、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )

    A. B. C. D.
    5、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )

    A.2.5 B.2 C. D.
    6、四边形的内角和与外角和的数量关系,正确的是(  )
    A.内角和比外角和大180° B.外角和比内角和大180°
    C.内角和比外角和大360° D.内角和与外角和相等
    7、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )
    A.1种 B.2种 C.3种 D.4种
    8、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
    A. B. C. D.
    9、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )

    A. B. C. D.54
    10、下列图案中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个多边形,每个外角都是,则这个多边形是________边形.
    2、如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E、F,连接PB、PD,若AE=2,PF=9,则图中阴影面积为______;

    3、判断:
    (1)菱形的对角线互相垂直且相等(________)
    (2)菱形的对角线把菱形分成四个全等的直角三角形(________)
    4、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.
    5、如图,点E,F在正方形ABCD的对角线AC上,AC=10,AE=CF=3,则四边形BFDE的面积为 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且.

    (1)求所在直线的解析式;
    (2)将纸片折叠,使点A与点C重合(折痕为),求折叠后纸片重叠部分的面积;
    (3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为________.
    2、已知长方形ABCO,O为坐标原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PC=m.

    (1)已知点D在第一象限且是直线y=2x+6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为   ,此时若△APD是等腰直角三角形,求点D的坐标;
    (2)直线y=2x+b过点(3,0),请问在该直线上,是否存在第一象限的点D使△APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由.
    3、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形.
    (1)如图①,在各边相等的四边形ABCD中,当AC=BD时,四边形ABCD    正四边形;(填“是”或“不是”)
    (2)如图②,在各边相等的五边形ABCDE中,AC=CE=EB=BD=DA,求证:五边形ABCDE是正五边形;
    (3)如图③,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由.

    4、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明BE=DF.

    5、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.
    (1)求证:四边形EFGH 是平行四边形
    (2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
    【详解】
    第一个图形是中心对称图形,又是轴对称图形,
    第二个图形是中心对称图形,又是轴对称图形,
    第三个图形不是中心对称图形,是轴对称图形,
    第四个图形不是中心对称图形,是轴对称图形,
    综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
    故选:B.
    【点睛】
    点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、A
    【分析】
    把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
    【详解】
    解:选项A中的图形是中心对称图形,故A符合题意;
    选项B中的图形不是中心对称图形,故B不符合题意;
    选项C中的图形不是中心对称图形,故C不符合题意;
    选项D中的图形不是中心对称图形,故D不符合题意;
    故选A
    【点睛】
    本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
    3、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A.圆既是中心对称图形也是轴对称图形,故此选项符合题意;
    B.平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;
    C.直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;
    D.等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意.
    故选:A.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    4、C
    【分析】
    由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
    【详解】
    解: 矩形ABCD,

    设BE=x,
    ∵AE为折痕,
    ∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
    Rt△ABC中,
    ∴Rt△EFC中,,EC=2-x,
    ∴,
    解得:,
    则点E到点B的距离为:.
    故选:C.
    【点睛】
    本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
    5、D
    【分析】
    利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
    【详解】
    解:四边形OABC是矩形,

    在中,由勾股定理可知:,

    弧长为,故在数轴上表示的数为,
    故选:.
    【点睛】
    本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
    6、D
    【分析】
    直接利用多边形内角和定理分别分析得出答案.
    【详解】
    解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.
    故选:D.
    【点睛】
    本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.
    7、C
    【分析】
    从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.
    【详解】
    解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;
    正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;
    正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;
    正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.
    故只购买一种瓷砖进行平铺,有3种方式.
    故选:C.
    【点睛】
    本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.
    8、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
    【详解】
    解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.
    【点睛】
    此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
    9、C
    【分析】
    过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
    【详解】

    如图,过点F作,分别交于M、N,
    ∵四边形ABCD是矩形,
    ∴,,
    ∵点E是BC的中点,
    ∴,
    ∵F是AE中点,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
    10、B
    【详解】
    A.是轴对称图形,不是中心对称图形,故不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故符合题意;
    C.是轴对称图形,不是中心对称图形,故不符合题意;
    D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
    故选B
    【点睛】
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    二、填空题
    1、六6
    【分析】
    根据正多边形的性质,边数等于360°除以每一个外角的度数.
    【详解】
    ∵一个多边形的每个外角都是60°,
    ∴n=360°÷60°=6,
    故答案为:六.
    【点睛】
    本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键.
    2、
    【分析】
    作PM⊥AD于M,交BC于N,根据矩形的性质可得S△PEB=S△PFD即可求解.
    【详解】
    解:作PM⊥AD于M,交BC于N.

    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
    ,
    ∴,

    ∴S阴=9+9=18,
    故答案为:18.
    【点睛】
    本题考查矩形的性质、三角形的面积等知识,解题的关键是证明.
    3、× √
    【分析】
    根据菱形的性质,即可求解.
    【详解】
    解:(1)菱形的对角线互相垂直且平分;
    (2)菱形的对角线把菱形分成四个全等的直角三角形.
    故答案为:(1)×;(2)√
    【点睛】
    本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.
    4、10
    【分析】
    如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.
    【详解】
    解:如图,由题意得:四边形为矩形,


    是等边三角形,


    故答案为:
    【点睛】
    本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.
    5、20
    【分析】
    连接BD,交AC于O,根据题意和正方形的性质可求得EF=4,AC⊥BD,由即可求解.
    【详解】
    解:如图,连接BD,交AC于O,

    ∵四边形ABCD是正方形,AC=10,
    ∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,
    ∵AE=CF=3,
    ∴EO=FO=2,
    ∴EF=EO+FO=4,

    故答案为:20.
    【点睛】
    本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键.
    三、解答题
    1、(1);(2)10;(3)(4,2).
    【分析】
    (1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可;
    (2)首先由折叠的性质得到AE=CE,然后在Rt△OCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;
    (3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可.
    【详解】
    解:(1)∵OA=2CO,
    设OC=x,则OA=2x
    在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,
    ∴x2+(2x)2=(4)2
    解得x=4(x=﹣4舍去)
    ∴OC=4,OA=8
    ∴A(8,0),C(0,4)
    设直线AC解析式为y=kx+b,
    ∴,解得,
    ∴直线AC解析式为y=﹣x+4;
    (2)由折叠得AE=CE,

    设AE=CE=y,则OE=8﹣y,
    在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,
    ∴(8﹣y)2+42=y2
    解得y=5
    ∴AE=CE=5
    在矩形OABC中,
    ∵BCOA,
    ∴∠CFE=∠AEF,
    由折叠得∠AEF=∠CEF,
    ∴∠CFE=∠CEF
    ∴CF=CE=5
    ∴S△CEF=CF•OC=×5×4=10
    即重叠部分的面积为10;
    (3)∵矩形是一个中心对称图形,对称中心是对角线的交点,
    ∴任何一个经过对角线交点的直线都把矩形的面积平分,
    所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,
    ∵A(8,0),C(0,4),
    ∴M点坐标为(4,2).
    【点睛】
    此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式.
    2、(1)点D(4,14);(2)存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
    【分析】
    (1)过点D作DE⊥y轴于E,PF⊥y轴于F,设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,可得点D(n,2n+6),根据△APD是等腰直角三角形,可得∠EDA=∠FAP,可证△EDA≌△FAP(AAS),可得AE=PF,ED=FA,再证四边形AFPB为矩形,得出点D(n,14),根据点D在直线y=2x+6上,求出n=4即可;
    (2)直线y=2x+b过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,证明△EDA≌△FPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当∠APD=90°,AP=DP,△ADP为等腰直角三角形,先证△ABP≌△PFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证△APF≌△DAE(AAS),得出求解方程即可
    【详解】
    解:(1)过点D作DE⊥y轴于E,PF⊥y轴于F,
    设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,
    ∴x=n,y=2n+6,
    ∴点D(n,2n+6),
    ∵△APD是等腰直角三角形,
    ∴DA=AP,∠DAP=90°,
    ∴∠DAE+∠FAP=180°-∠DAP=90°,
    ∵DE⊥y轴,PF⊥y轴,
    ∴∠DEA=∠AFP=90°,
    ∴∠EDA+∠DAE=90°,
    ∴∠EDA=∠FAP,
    在△EDA和△FAP中,

    ∴△EDA≌△FAP(AAS),
    ∴AE=PF,ED=FA,
    ∵四边形OABC为矩形,B的坐标为(8,6),
    ∴AB=OC=8,OA=BC=6,∠FAB=∠ABP=90°,
    ∵∠AFP=90°,
    ∴四边形AFPB为矩形,
    ∴PF=AB=8,
    ∴EA=FP=8,
    ∴OE=OA+AE=6+8=14,
    ∴点D(n,14),
    ∵点D在直线y=2x+6上,
    ∴14=2n+6,,
    ∴n=4,
    ∴点D(4,14);


    (2)直线y=2x+b过点(3,0),
    ∴0=6+b,
    ∴b =-6,
    ∴直线y=2x-6,
    设点D(x, 2x-6),
    过点D作EF⊥y轴,交y轴于E,交CB延长线于F,
    要使△ADP为等腰直角三角形,
    当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,
    ∴∠ADE+∠FDP=180°-∠ADP=90°,
    ∵DE⊥y轴,PF⊥y轴,
    ∴∠DEA=∠AFP=90°,
    ∴∠EDA+∠DAE=90°,
    ∴∠EAD=∠FDP,
    在△EDA和△FPD中,

    ∴△EDA≌△FPD(AAS),
    ∴AE=DF=2x-6-8=2x-14,ED=FP=x,
    ∵四边形OABC为矩形,AB=OC=8,OA=BC=6,
    ∴∠OCF=90°,
    ∴四边形OCFE为矩形,EF=OC=8,
    ∴DE+DF=x+2x-14=8,
    解得x=,
    ∴,
    ∴点D;


    当∠APD=90°,AP=DP,△ADP为等腰直角三角形,
    ∴∠APB+∠DPF=90°,
    过D作DF⊥射线CB于F,
    ∴∠DFP=90°,
    ∵四边形OABC为矩形,
    ∴AB=OC=8,OA=CB=6,∠ABP=90°,
    ∴∠BAP+∠APB=90°,
    ∴∠BAP=∠FPD,
    在△ABP和△PFD中,

    ∴△ABP≌△PFD(AAS),
    ∴BP=FD=x-8,AB=PF=8,
    ∴CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,
    解得x=,
    ∴,
    ∴点D;


    当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,
    ∴∠EAD +∠PAF=90°,
    过D作DE⊥y轴于E,过P作PF⊥y轴于F,
    ∴∠DEA=∠PFA=90°,
    ∴∠FAP+∠FPA=90°,
    ∴∠FPA=∠EAD,
    ∵四边形OABC为矩形,
    ∴AB=OC=8,OA=CB=6,∠ABP=∠BAO=90°,
    ∵∠PFA=90°,
    ∴四边形AFPB为矩形,
    ∴PF=AB=8,
    在△APF和△DAE中,

    ∴△APF≌△DAE(AAS),
    ∴FP=AE=8,AF=DE=6-m,
    ∴OE=OA+AE=6+8=14,
    ∴,
    解得:,
    ∵PC=m≥0,
    ∴AF=6-m≤6<10,
    ∴此种情况不成立;


    综合存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
    【点睛】
    本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键.
    3、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析
    【分析】
    (1)根据对角线相等的菱形是正方形,证明即可;
    (2)由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;
    (3)由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;
    【详解】
    (1)解:结论:四边形ABCD是正四边形.
    理由:∵AB=BC=CD=DA,
    ∴四边形ABCD是菱形,
    ∵AC=BD,
    ∴四边形ABCD是正方形.
    ∴四边形ABCD是正四边形.
    故答案为:是.
    (2)证明:∵凸五边形ABCDE的各条边都相等,
    ∴AB=BC=CD=DE=EA,
    在△ABC、△BCD、△CDE、△DEA、△EAB中,

    ∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),
    ∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,
    ∴五边形ABCDE是正五边形;
    (3)解:结论:至少需要3条对角线相等才能判定它是正五边形.
    若AC=BE=CE,五边形ABCDE是正五边形,理由如下:
    在△ABE、△BCA和△DEC中,

    ∴△ABE≌△BCA≌△DEC(SSS),
    ∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,
    在△ACE和△BEC中,

    ∴△ACE≌△BEC(SSS),
    ∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,
    ∵四边形ABCE内角和为360°,
    ∴∠ABC+∠ECB=180°,
    ∴AB∥CE,
    ∴∠ABE=∠BEC,∠BAC=∠ACE,
    ∴∠CAE=∠CEA=2∠ABE,
    ∴∠BAE=3∠ABE,
    同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,
    ∴五边形ABCDE是正五边形;
    【点睛】
    本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.
    4、见详解
    【分析】
    由题意易得AB=CD,AB∥CD,AE=CF,则有∠BAE=∠DCF,进而问题可求证.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴∠BAE=∠DCF,
    ∵E,F是对角线AC的三等分点,
    ∴AE=CF,
    在△ABE和△CDF中,

    ∴△ABE≌△CDF(SAS),
    ∴BE=DF.
    【点睛】
    本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.
    5、(1)见解析;(2)16
    【分析】
    (1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;
    (2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,
    ∴,
    ∴OE=OG,OF=OH,
    ∴四边形EFGH是平行四边形;
    (2)∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,
    ∴,
    ∴ ,
    ∵的周长为2(AB+BC)=32,
    ∴ ,
    ∴ ,
    由(1)知:四边形EFGH是平行四边形,
    ∴四边形EFGH的周长为 .
    【点睛】
    本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.

    相关试卷

    数学第十五章 四边形综合与测试课时作业:

    这是一份数学第十五章 四边形综合与测试课时作业

    初中北京课改版第十五章 四边形综合与测试习题:

    这是一份初中北京课改版第十五章 四边形综合与测试习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共33页。试卷主要包含了如图,M等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map