搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析京改版八年级数学下册第十五章四边形达标测试练习题(无超纲)

    2022年精品解析京改版八年级数学下册第十五章四边形达标测试练习题(无超纲)第1页
    2022年精品解析京改版八年级数学下册第十五章四边形达标测试练习题(无超纲)第2页
    2022年精品解析京改版八年级数学下册第十五章四边形达标测试练习题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十五章 四边形综合与测试课后练习题

    展开

    这是一份数学八年级下册第十五章 四边形综合与测试课后练习题,共30页。
    京改版八年级数学下册第十五章四边形达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是(  )

    A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
    2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )

    A.5 B.6 C.8 D.10
    3、下列图形中,既是轴对称图形又是中心对称图形的是( ).
    A. B.
    C. D.
    4、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).

    A.4 B.10 C.6 D.8
    5、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )

    A. B. C. D.
    6、下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    7、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )

    A.A,B,C都不在 B.只有B
    C.只有A,C D.A,B,C
    8、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )

    A.1 B. C. D.2
    9、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )

    A.1 B.1.5 C.2 D.4
    10、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为(  )

    A.180° B.360°
    C.540° D.不能确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.


    2、过五边形一个顶点的对角线共有________条.
    3、在平面直角坐标系中,与点关于原点对称的点的坐标是________.
    4、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则______.
    5、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.


    三、解答题(5小题,每小题10分,共计50分)
    1、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;

    (拓展应用)
    (2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
    ①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
    ②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.
    2、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.
    (1)若,求线段AC的长;
    (2)求证:.

    3、如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.

    (1)求证:△BEF≌△CDF.
    (2)连接BD,CE,若∠BFD=2∠A,求证四边形BECD是矩形.
    4、如图,在等腰三角形ABC中,AB=BC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F.

    (1)求证:BCF;
    (2)当C=a时,判定四边形的形状并说明理由.
    5、如图1,在平面直角坐标系中,且;

    (1)试说明是等腰三角形;
    (2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
    (3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
    ①若的一条边与BC平行,求此时点M的坐标;
    ②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.

    -参考答案-
    一、单选题
    1、B
    【分析】
    先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AD∥BC,且AD=BC,
    又∵AD=DE,
    ∴DE∥BC,且DE=BC,
    ∴四边形BCED为平行四边形,
    A、∵AB=BE,DE=AD,
    ∴BD⊥AE,
    ∴□DBCE为矩形,故本选项不符合题意;
    B、∵DE⊥DC,
    ∴∠EDB=90°+∠CDB>90°,
    ∴四边形DBCE不能为矩形,故本选项符合题意;
    C、∵∠ADB=90°,
    ∴∠EDB=90°,
    ∴□DBCE为矩形,故本选项不符合题意;
    D、∵CE⊥DE,
    ∴∠CED=90°,
    ∴□DBCE为矩形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
    2、A
    【分析】
    由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.
    【详解】
    解:∵四边形ABCD是菱形,AC=6,BD=8,
    ∴OA=OC=3,OB=OD=4,AO⊥BO,
    在Rt△AOB中,由勾股定理得:,
    故选:A.
    【点睛】
    本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.
    3、C
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;
    C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、B
    【分析】
    根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
    【详解】
    解:∵∠C=90°,
    ∴∠CAB+∠CBA=90°,
    ∵点P,D分别是AF,AB的中点,
    ∴PD=BF=6,PD//BC,
    ∴∠PDA=∠CBA,
    同理,QD=AE=8,∠QDB=∠CAB,
    ∴∠PDA+∠QDB=90°,即∠PDQ=90°,
    ∴PQ==10,
    故选:B.
    【点睛】
    本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    5、B
    【分析】
    利用中心对称图形的定义判断即可.
    【详解】
    解:根据中心对称图形的定义可知,②满足条件.
    故选:.
    【点睛】
    本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
    6、A
    【分析】
    根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
    【详解】
    解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
    A选项是中心对称图形.故本选项正确.
    故选:A.
    【点睛】
    本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
    7、D
    【分析】
    根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.
    【详解】
    解:如图所示:连接BD,

    ∵,,,
    ∴,
    ∴为直角三角形,
    ∵D为AC中点,
    ∴,
    ∵覆盖半径为300 ,
    ∴A、B、C三个点都被覆盖,
    故选:D.
    【点睛】
    题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.
    8、B
    【分析】
    作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
    【详解】
    解:如图,在线段AD上截取AM,使AM=AE,

    ∵AD=AB,
    ∴DM=BE,
    ∵点A关于直线DE的对称点为F,
    ∴△ADE≌△FDE,
    ∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
    ∴∠DFG=90°,
    在Rt△DFG和Rt△DCG中,
    ∵,
    ∴Rt△DFG≌Rt△DCG(HL),
    ∴∠3=∠4,
    ∵∠ADC=90°,
    ∴∠1+∠2+∠3+∠4=90°,
    ∴2∠2+2∠3=90°,
    ∴∠2+∠3=45°,
    即∠EDG=45°,
    ∵EH⊥DE,
    ∴∠DEH=90°,△DEH是等腰直角三角形,
    ∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
    ∴∠1=∠BEH,
    在△DME和△EBH中,
    ∵,
    ∴△DME≌△EBH(SAS),
    ∴EM=BH,
    Rt△AEM中,∠A=90°,AM=AE,
    ∴,
    ∴ ,即=.
    故选:B.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
    9、C
    【分析】
    取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
    【详解】
    解:取线段AC的中点G,连接EG,如图所示.

    ∵AC=BC=8,∠BCA=60°,
    ∴△ABC为等边三角形,且AD为△ABC的对称轴,
    ∴CD=CG=AB=4,∠ACD=60°,
    ∵∠ECF=60°,
    ∴∠FCD=∠ECG,
    在△FCD和△ECG中,

    ∴△FCD≌△ECG(SAS),
    ∴DF=GE.
    当EG∥BC时,EG最小,
    ∵点G为AC的中点,
    ∴此时EG=DF=CD=BC=2.
    故选:C.
    【点睛】
    本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
    10、B
    【分析】
    设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
    【详解】
    解:设BE与DF交于点M,BE与AC交于点N,

    ∵ ,
    ∴ ,
    ∵,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
    二、填空题
    1、2.5.
    【分析】
    如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可.
    【详解】
    解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,
    ∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,
    ∴,,,
    过点B作BC⊥AD于C,
    ∴∠BCD =90°,
    ∵四边形ADEF是矩形,
    ∴∠ADE=∠DEF=90°
    ∴四边形BCDE是矩形,
    ∴,,
    ∴,
    ∴,
    答:则壁虎捕捉蚊子的最短路程是2.5m.
    故答案为:2.5.

    【点睛】
    本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.
    2、2
    【分析】
    画出图形,直接观察即可解答.
    【详解】
    解:如图所示,过五边形一个顶点的对角线共有2条;
    故答案为:2

    【点睛】
    本题考查了多边形对角线的条数,解题关键是明确过n边形的顶点可引出(n-3)条对角线.
    3、(-3,-1)
    【分析】
    由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.
    【详解】
    解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).
    故答案为:(-3,-1).
    【点睛】
    本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
    4、5或6
    【分析】
    先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 .
    【详解】
    解:<20,
    ∴,
    ∵能被5整除,
    当n=5,能被5整除,
    当n-1=5,n=6,能被5整除,
    故答案为5或6.
    【点睛】
    本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键.
    5、或
    【分析】
    分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
    【详解】
    如图:当将纸片沿纵向对折

    根据题意可得:
    为的三等分点

    在中有


    如图:当将纸片沿横向对折

    根据题意得:,
    在中有
    为的三等分点


    故答案为:或
    【点睛】
    本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
    三、解答题
    1、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
    【分析】
    (1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
    (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
    【详解】
    (1)证明:∵∠ACD是△ABC的外角
    ∴∠ACD=∠A+∠ABC
    ∵CE平分∠ACD

    又∵∠ECD=∠E+∠EBC

    ∵BE平分∠ABC


    ∴;
    (2)①∵∠ACD=130°,∠BCD=50°
    ∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
    ∵∠CBA=40°
    ∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
    ∵AD平分∠BAC

    ∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
    ②∠CAD+41°=∠CBD
    设∠CBD=α
    ∵∠ABD+∠CBD=180°
    ∴∠ABC=180°﹣2α
    ∵∠ACB=82°
    ∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
    ∵AD平分∠BAC
    ∴∠CAD=∠CAB=α﹣41°
    ∴∠CAD+41°=∠CBD.
    【点睛】
    本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.
    2、(1);(2)见解析
    【分析】
    (1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;
    (2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.
    【详解】
    (1)







    (2)连接DE



    ,,



    【点睛】
    本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.
    3、(1)见解析;(2)见解析
    【分析】
    (1)根据平行四边形的性质可得ABCD且AB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.
    (2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明
    【详解】
    (1)∵四边形ABCD为平行四边形,
    ∴ABCD且AB=CD.
    ∵BE=AB,
    ∴BECD且BE=CD.
    ∴∠BEF=∠FDC,∠FBE=∠FCD,
    ∴△BEF≌△CDF.
    (2)∵BECD且BE=CD.
    ∴四边形BECD为平行四边形,
    ∴DF=DE,CF=BC,
    ∵四边形ABCD为平行四边形,
    ∴∠FCD=∠A,
    ∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A,
    ∴∠FDC=∠FCD,
    ∴FD=FC.
    又DF=DE,CF=BC,
    ∴BC=DE,
    ∴▱BECD是矩形.
    【点睛】
    本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.
    4、(1)见解析;(2)菱形,见解析
    【分析】
    (1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;
    (2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC
    通过证明∠FBC=∠可得 BC,利用∠EC=∠C=180°推出∠EC+∠=180°
    得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形.
    【详解】
    (1)证明:∵等腰三角形ABC旋转角a得到
    ∴∠BD=∠FBC=a
    ∠=∠=∠A=∠C B=B=AB=BC
    ∴BCF(ASA)
    (2)解:四边形为菱形
    理由:∵C=a
    由(1)可知∠=∠=∠A=∠C=a B=B=AB=BC
    又∵ ∠BD=∠FBC=a
    ∴∠FBC=∠
    ∴BC
    ∴∠EC=∠C=180°
    ∴∠EC+∠=180°
    ∴BCE
    ∴四边形为平行四边形
    又∵B=BC
    ∴ 四边形为菱形
    【点睛】
    本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.
    5、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【分析】
    (1)设,,,则,由勾股定理求出,即可得出结论;
    (2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
    (3)①分当时,;当时,;得出方程,解方程即可;
    ②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
    【详解】
    解:(1)证明:设,,,则,
    在中,,

    ∴是等腰三角形;
    (2)∵,,
    ∴,
    ∴,,,.
    ∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
    故答案为:12,0;-8,0;0,16;
    (3)①如图3-1所示,
    当MN∥BC时,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴AM=BM,
    ∴M为AB的中点,
    ∵,
    ∴,
    ∴,
    ∴点M的坐标为(2,0);

    如图3-2所示,当ON∥BC时,
    同理可得,
    ∴,
    ∴M点的坐标为(4,0);
    ∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;

    ②如图3-3所示,当OM=OE时,
    ∵E是AC的中点,∠AOC=90°,,
    ∴,
    ∴此时M的坐标为(0,10);

    如图3-4所示,当时,
    ∴此时M点与A点重合,
    ∴M点的坐标为(12,0);

    如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
    ∵OE=AE,EF⊥OA,
    ∴,
    ∴,
    设,则,
    ∵,
    ∴,
    解得,
    ∴M点的坐标为(,0);
    综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【点睛】
    本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.

    相关试卷

    初中数学第十五章 四边形综合与测试同步训练题:

    这是一份初中数学第十五章 四边形综合与测试同步训练题,共26页。

    数学北京课改版第十五章 四边形综合与测试课时训练:

    这是一份数学北京课改版第十五章 四边形综合与测试课时训练,共37页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共25页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map