年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)

    立即下载
    加入资料篮
    2022年精品解析京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)第1页
    2022年精品解析京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)第2页
    2022年精品解析京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试复习练习题

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共21页。
    京改版八年级数学下册第十五章四边形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图标中,既是中心对称图形又是轴对称图形的是(    A. B. C. D.2、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,DE分别是ABAC的中点,连接DEBE,点MCB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为(    A.16 B.24 C.32 D.403、如图,在中,,点分别是上的点,,点分别是的中点,则的长为(    ).A.4 B.10 C.6 D.84、如图,在△ABC中,点EF分别是ABAC的中点.已知∠B=55°,则∠AEF的度数是(  )A.75° B.60° C.55° D.40°5、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是(    A.三角形 B.四边形 C.五边形 D.六边形6、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或27、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是(  )A.cm B.2cm C.1cm D.2cm8、一个多边形每个外角都等于36°,则这个多边形是几边形(     A.7 B.8 C.9 D.109、下列图形中,既是中心对称图形又是轴对称图形的有几个(  )A.1个 B.2个 C.3个 D.4个10、下列图形中,是中心对称图形的是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.2、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.3、若点关于原点的对称点是,则______.4、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为____.5、正方形的一条对角线长为4,则这个正方形面积是_________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图:五边形ABCDE的内角都相等,DFAB(1)则∠CDF     (2)若EDCDAEBC,求证:AFBF2、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.3、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,MAD上不同于AD两点的一动点,NCD上一动点,且AM+CN=1.(1)证明:无论MN怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.4、如图,四边形ABCD是平行四边形,,且分别交对角线于点EF,连接EDBF(1)求证:四边形BEDF是平行四边形;(2)若AEEF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形.5、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形.(1)如图①,在各边相等的四边形ABCD中,当ACBD时,四边形ABCD      正四边形;(填“是”或“不是”)(2)如图②,在各边相等的五边形ABCDE中,ACCEEBBDDA,求证:五边形ABCDE是正五边形;(3)如图③,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由. -参考答案-一、单选题1、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
    B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
    故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2、C【分析】由中点的定义可得AE=CEAD=BD,根据三角形中位线的性质可得DE//BCDE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AEDE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】DE分别是ABAC的中点,AE=CEAD=BDDE为△ABC的中位线,DE//BCDE=BC∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,∴△MBD≌△EDAMD=AEDE=MBDE//MB∴四边形DMBE是平行四边形,MD=BEAC=18,BC=14,∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.故选:C.【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.3、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点PD分别是AFAB的中点,PD=BF=6,PD//BC∴∠PDA=∠CBA同理,QD=AE=8,∠QDB=∠CAB∴∠PDA+∠QDB=90°,即∠PDQ=90°,PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4、C【分析】EF是△ABC的中位线,得EFBC,再由平行线的性质即可求解.【详解】解:∵点EF分别是ABAC的中点,EF是△ABC的中位线,EFBC∴∠AEF=∠B=55°,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键.5、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.6、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.7、B【分析】由菱形的性质得ABBC=2(cm),OAOCOBODACBD,再证△ABC是等边三角形,得ACAB=2(cm),则OA=1(cm),然后由勾股定理求出OB(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cmABBC=2(cm),OAOCOBODACBD∵∠ABC=60°,∴△ABC是等边三角形,ACAB=2cm,OA=1(cm),RtAOB中,由勾股定理得:OB(cm),BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.8、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.9、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、B【分析】根据中心对称图形的定义求解即可.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.二、填空题1、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x度,则内角为(5x−60)度由题意得:解得:则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.2、            【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,的邻角,的对角,故答案为:【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.3、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.4、(-2,-7)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点(2,-7)关于y轴对称的点的坐标是(-2,-7).故答案为:(-2,-7).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、8【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.三、解答题1、(1)54°;(2)见解析.【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;(2)连接ADDB,然后证明△DEA≌△DCB可得ADDB,再根据等腰三角形的性质可得AFBF【详解】解:(1)∵五边形ABCDE的内角都相等,∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,DFAB∴∠DFB=90°,∴∠CDF=360°﹣90°﹣108°﹣108°=54°,故答案为:54°.(2)连接ADDB在△AED和△BCD中,∴△DEA≌△DCBSAS),ADDBDFABAFBF【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.2、这个多边形的边数是6【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n由题意得:(n-2)×180°=2×360°,解得n=6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.3、(1)见解析;(2)△BMN面积的最小值为【分析】(1)连接BD,证明△AMB≌△DNB,则可得BM=BN,∠MBA=∠NBD,由菱形的性质易得∠MBN=60゜,从而可证得结论成立;(2)过点BBEMN于点E【详解】(1)证明:如图所示,连接BD在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,ABBDAM+CN=1,DN+CN=1,AMDN在△AMB和△DNB中,∴△AMB≌△DNBSAS),BMBN,∠MBA=∠NBD又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)过点BBEMN于点EBMBNMNx∴当BMAD时,x最小,此时,∴△BMN面积的最小值为【点睛】本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等.4、(1)证明见解析;(2)【分析】(1)先证明再证明可得从而有 于是可得结论;(2)先证明再证明,从而可得结论.【详解】证明:(1) 四边形ABCD是平行四边形, 四边形BEDF是平行四边形.(2)由(1)得: 四边形BEDF是平行四边形, 四边形ABCD是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的三角形是解题的关键.5、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;(3)由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出ABCE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形.理由:∵ABBCCDDA∴四边形ABCD是菱形,ACBD∴四边形ABCD是正方形.∴四边形ABCD是正四边形.故答案为:是.(2)证明:∵凸五边形ABCDE的各条边都相等,ABBCCDDEEA在△ABC、△BCD、△CDE、△DEA、△EAB中,∴△ABC≌△BCD≌△CDE≌△DEAEABSSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB∴五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形.ACBECE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,∴△ABE≌△BCA≌△DECSSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC在△ACE和△BEC中,∴△ACE≌△BECSSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,ABCE∴∠ABE=∠BEC,∠BAC=∠ACE∴∠CAE=∠CEA=2∠ABE∴∠BAE=3∠ABE同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE∴五边形ABCDE是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键. 

    相关试卷

    北京课改版八年级下册第十五章 四边形综合与测试同步练习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。

    初中数学第十五章 四边形综合与测试巩固练习:

    这是一份初中数学第十五章 四边形综合与测试巩固练习,共25页。

    数学八年级下册第十五章 四边形综合与测试练习题:

    这是一份数学八年级下册第十五章 四边形综合与测试练习题,共34页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map