数学八年级下册第十五章 四边形综合与测试课后复习题
展开
这是一份数学八年级下册第十五章 四边形综合与测试课后复习题,共31页。试卷主要包含了下列图形中,是中心对称图形的是,下列说法中,不正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图标中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
2、下列图形中,可以看作是中心对称图形的是( )
A. B.
C. D.
3、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
4、下列图形中,是中心对称图形的是( )
A. B.
C. D.
5、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
6、下列图形中,是中心对称图形的是( )
A. B. C. D.
7、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
8、下列说法中,不正确的是( )
A.四个角都相等的四边形是矩形
B.对角线互相平分且平分每一组对角的四边形是菱形
C.正方形的对角线所在的直线是它的对称轴
D.一组对边相等,另一组对边平行的四边形是平行四边形
9、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )
A.梯形的下底是上底的两倍 B.梯形最大角是
C.梯形的腰与上底相等 D.梯形的底角是
10、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.
2、如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ等于,则OQ的长等于 _____.
3、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.
(1)以点E,O,F,D为顶点的图形的面积为________________;
(2)线段EF的最小值是_______________.
4、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是__________.
5、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.
(1)求证:四边形ADCE是菱形;
(2)若AB=8,∠DAE=60°,则△ACB的面积为 (直接填空).
2、已知:如图,在中,,,.
求证:互相平分.
如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4
(1)判断△ACF的形状,并说明理由;
(2)求△ACF的面积;
3、(1)先化简,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;
(2)如图,菱形ABCD中,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.证明:四边形AECF是矩形.
4、综合与实践
(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为 .
(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为 .
5、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P.
(1)试判断四边形的形状,并说明理由;
(2)若将改为矩形,且,其他条件不变,求四边形的面积;
(3)要得到矩形,应满足的条件是_________(填上一个即可).
-参考答案-
一、单选题
1、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
2、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
3、C
【分析】
根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.
【详解】
解:①∵四边形ACHI和四边形ABED都是正方形,
∴AI=AC,AB=AD,∠IAC=∠BAD=90°,
∴∠IAC+∠CAB=∠BAD+∠CAB,
即∠IAB=∠CAD,
在△ABI和△ADC中,
,
∴△ABI≌△ADC(SAS),
∴BI=CD,
故①正确;
②过点B作BM⊥IA,交IA的延长线于点M,
∴∠BMA=90°,
∵四边形ACHI是正方形,
∴AI=AC,∠IAC=90°,S1=AC2,
∴∠CAM=90°,
又∵∠ACB=90°,
∴∠ACB=∠CAM=∠BMA=90°,
∴四边形AMBC是矩形,
∴BM=AC,
∵S△ABI=AI•BM=AI•AC=AC2=S1,
由①知△ABI≌△ADC,
∴S△ACD=S△ABI=S1,
即2S△ACD=S1,
故②正确;
③过点C作CN⊥DA交DA的延长线于点N,
∴∠CNA=90°,
∵四边形AKJD是矩形,
∴∠KAD=∠AKJ=90°,S3=AD•AK,
∴∠NAK=∠AKC=90°,
∴∠CNA=∠NAK=∠AKC=90°,
∴四边形AKCN是矩形,
∴CN=AK,
∴S△ACD=AD•CN=AD•AK=S3,
即2S△ACD=S3,
由②知2S△ACD=S1,
∴S1=S3,
在Rt△ACB中,AB2=BC2+AC2,
∴S3+S4=S1+S2,
又∵S1=S3,
∴S1+S4=S2+S3,
即③正确;
④在Rt△ACB中,BC2+AC2=AB2,
∴S3+S4=S1+S2,
∴,
故④错误;
综上,共有3个正确的结论,
故选:C.
【点睛】
本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.
4、A
【分析】
把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
【详解】
解:选项A中的图形是中心对称图形,故A符合题意;
选项B中的图形不是中心对称图形,故B不符合题意;
选项C中的图形不是中心对称图形,故C不符合题意;
选项D中的图形不是中心对称图形,故D不符合题意;
故选A
【点睛】
本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
5、D
【分析】
利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
【详解】
解:四边形OABC是矩形,
,
在中,由勾股定理可知:,
,
弧长为,故在数轴上表示的数为,
故选:.
【点睛】
本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
6、B
【分析】
根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
【详解】
选项、、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,
选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,
故选:.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
8、D
【分析】
根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
【详解】
解:A、四个角都相等的四边形是矩形,说法正确;
B、正方形的对角线所在的直线是它的对称轴,说法正确;
C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;
D、一组对边相等且平行的四边形是平行四边形,原说法错误;
故选:D.
【点睛】
本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.
9、D
【分析】
如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项.
【详解】
解:如图,,
,
,
,
梯形是等腰梯形,
,
则梯形最大角是,选项B正确;
没有指明哪个角是底角,
梯形的底角是或,选项D错误;
如图,连接,
,
是等边三角形,
,
,
点共线,
,
,
,
四边形是平行四边形,
,
,
,
,,
四边形是菱形,
,
,,选项A、C正确;
故选:D.
【点睛】
本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.
10、B
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
【详解】
第一个图形是中心对称图形,又是轴对称图形,
第二个图形是中心对称图形,又是轴对称图形,
第三个图形不是中心对称图形,是轴对称图形,
第四个图形不是中心对称图形,是轴对称图形,
综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
故选:B.
【点睛】
点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、720°720度
【分析】
根据多边形内角和可直接进行求解.
【详解】
解:由题意得:该正六边形的内角和为;
故答案为720°.
【点睛】
本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.
2、
【分析】
由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.
【详解】
解:如图,连接PO,并延长交l2于点H,
∵l1⊥l3,l2⊥l3,
∴l1∥l3,∠APC=∠BQC=∠ACB=90°,
∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,
∴∠PAC=∠BCQ,
在△ACP和△CBQ中,
,
∴△ACP≌△CBQ(AAS),
∴AP=CQ,PC=BQ,
∴PC+CQ=AP+BQ=PQ=,
∵AP∥BQ,
∴∠OAP=∠OBH,
∵点O是斜边AB的中点,
∴AO=BO,
在△APO和△BHO中,
,
∴△APO≌△BHO(AAS),
∴AP=BH,OP=OH,
∴BH+BQ=AP+BQ=PQ,
∴PQ=QH=,
∵∠PQH=90°,
∴PH=PQ=12,
∵OP=OH,∠PQH=90°,
∴OQ=PH=6.
故答案为:6
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形和直角三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形和直角三角形的性质定理是解题的关键.
3、1
【分析】
(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;
(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.
【详解】
解:(1)连接OA、OD,
∵四边形ABCD是正方形,
∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,
∴∠AOE+∠DOE=90°,
∵OE⊥OF,
∴∠DOF+∠DOE=90°,
∴∠AOE=∠DOF,
在△OAE和△ODF中,
,
∴△OAE≌△ODF(ASA),
∴S△OAE=S△ODF,
∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,
∵AD=2,
∴S四边形EOFD= ×4=1,
故答案为:1;
(2)∵△OAE≌△ODF,
∴OE=OF,
∴△EOF为等腰直角三角形,则EF=OE,
当OE⊥AD时OE最小,即EF最小,
∵OA=OD,∠AOD=90°,
∴OE=AD=1,
∴EF的最小值,
故答案为:.
【点睛】
本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.
4、菱形
【分析】
先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.
【详解】
解:图象如图所示:
∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),
∴OA=OC=3,OB=OD=2,
∴四边形ABCD为平行四边形,
∵AC⊥BD,
∴四边形ABCD为菱形,
故答案为:菱形.
【点睛】
本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件.
5、
【分析】
根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.
【详解】
解:根据两组对边分别平行的四边形是平行四边形可知:
∵AB//CD,BC//AD,
∴四边形ABCD为平行四边形.
故答案为://.
【点睛】
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
三、解答题
1、(1)见解析;(2)
【分析】
(1)由AD//CE,CD//AE ,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;
(2)由菱形的性质可得当∠DAE=60°时,∠CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可.
【详解】
解:(1)∵∥,∥,
∴四边形是平行四边形.
∵,是的中点,
∴,
∴四边形是菱形;
(2)∵四边形是菱形,,
∴.
∵在Rt△中,,,,
∴,
∴.
∴.
【点睛】
此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键.
2、证明见解析
【分析】
连接,由三角形中位线定理可得,,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;
【详解】
证明:连接,
∵AD=DB,BE=EC,
∴,
∵BE=EC,AF=FC,
∴,
∴四边形ADEF是平行四边形,
∴AE,DF互相平分.
【点睛】
本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.
(1)△ACF是等腰三角形,理由见解析;(2)10;(3)
3、(1),0;(2)证明见解析.
【分析】
(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;
(2)首先根据菱形的性质得到,,然后根据E、F分别是BC、AD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形.
【详解】
(1)(a+b)(a﹣b)﹣a(a﹣2b)
将a=1,b=2代入得:原式=;
(2)如图所示,
∵四边形ABCD是菱形,
∴,且,
又∵E、F分别是BC、AD的中点,
∴,
∴四边形AECF是平行四边形,
∵AB=AC,E是BC的中点,
∴,即,
∴平行四边形AECF是矩形.
【点睛】
此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理.
4、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析
【分析】
(1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
(2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
(3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.
【详解】
解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,
在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC ,
∴∠BCM'+∠BCD=180°,
∴点M'、C、N三点共线,
∵∠MBN=45°,
∴∠ABM+∠CBN=45°,
∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,
即∠M'BN=∠MBN,
∵BN=BN,
∴△NBM≌△NBM',
∴MN= M'N,
∵M'N= M'C+CN,
∴MN= M'C+CN=AM+CN;
(2)MN=AM+CN;理由如下:
如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,
∵∠A+∠C=180°,
∴∠BCM'+∠BCD=180°,
∴点M'、C、N三点共线,
∵∠MBN=∠ABC,
∴∠ABM+∠CBN=∠ABC=∠MBN,
∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBN,
∵BN=BN,
∴△NBM≌△NBM',
∴MN= M'N,
∵M'N= M'C+CN,
∴MN= M'C+CN=AM+CN;
(3)MN=CN-AM,理由如下:
如图,在NC上截取C M'=AM,连接B M',
∵在四边形ABCD中,∠ABC+∠ADC=180°,
∴∠C+∠BAD=180°,
∵∠BAM+∠BAD=180°,
∴∠BAM=∠C,
∵AB=BC,
∴△ABM≌△CB M',
∴AM=C M',BM=B M',∠ABM=∠CB M',
∴∠MA M'=∠ABC,
∵∠MBN=∠ABC,
∴∠MBN=∠MA M'=∠M'BN,
∵BN=BN,
∴△NBM≌△NBM',
∴MN= M'N,
∵M'N=CN-C M',
∴MN=CN-AM.
故答案是:MN=CN-AM.
【点睛】
本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.
5、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)
【分析】
(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.
(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.
(3)添加的条件只要可以证明即可得到矩形.
【详解】
解:(1)四边形BPCO是平行四边形,
∵BP∥AC,CP∥BD,
∴四边形BPCO是平行四边形.
(2)连接OP.
∵四边形ABCD是矩形,
∴OB=BD,OC=AC,AC=BD,∠ABC=90°,
∴OB=OC.
又四边形BPCO是平行四边形,
∴□BPCO是菱形.
∴OP⊥BC.
又∵AB⊥BC,
∴OP∥AB.
又∵AC∥BP,
四边形是平行四边形,
∴OP=AB=6.
∴S菱形BPCO=.
(3)AB=BC或AC⊥BD等(答案不唯一).
当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,
当AC⊥BD时,利用含有的平行四边形为矩形,即可得到矩形.
【点睛】
本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共28页。试卷主要包含了下列图形中,是中心对称图形的是,下列说法中,正确的是,如图,M等内容,欢迎下载使用。
这是一份2021学年第十五章 四边形综合与测试随堂练习题,共26页。
这是一份八年级下册第十五章 四边形综合与测试综合训练题,共1页。试卷主要包含了下列图形中,是中心对称图形的是,如图,M,下列说法中正确的是等内容,欢迎下载使用。