北京课改版八年级下册第十五章 四边形综合与测试同步训练题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步训练题,共23页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各APP标识的图案是中心对称图形的是( )A. B. C. D.2、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是( )A. B. C. D.543、下列图形中,既是中心对称图形又是轴对称图形的有几个( )A.1个 B.2个 C.3个 D.4个4、下图是文易同学答的试卷,文易同学应得( )A.40分 B.60分 C.80分 D.100分5、下列图形中,既是轴对称图形又是中心对称图形的是( ).A. B.C. D.6、如图,在六边形中,若,则( )A.180° B.240° C.270° D.360°7、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )A.①②③ B.②③④ C.①②④ D.①④8、下列图形中,既是中心对称图形也是轴对称图形的是( )A.圆 B.平行四边形 C.直角三角形 D.等边三角形9、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )A.22 B.18 C.14 D.1010、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )A.120° B.118° C.110° D.108°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.2、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.3、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果∠AOD=60°,则DC=__.4、在矩形ABCD中,点E在AD边上,△BCE是以BE为一腰的等腰三角形,若AB=4,BC=5,则线段DE的长为 _____.5、点D、E、F分别是△ABC三边的中点,△ABC的周长为24,则△DEF的周长为______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.(1)若,求线段AC的长;(2)求证:.2、如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE= °时,四边形BFDE是菱形.3、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.4、已知:▱ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BM∥DN,BM=DN.
5、如图,在等腰三角形ABC中,AB=BC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F.(1)求证:BCF;(2)当C=a时,判定四边形的形状并说明理由. -参考答案-一、单选题1、C【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.【详解】如图,过点F作,分别交于M、N,∵四边形ABCD是矩形,∴,,∵点E是BC的中点,∴,∵F是AE中点,∴,∴.故选:C.【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.3、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键5、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、C【分析】根据多边形外角和求解即可.【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.7、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.8、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.圆既是中心对称图形也是轴对称图形,故此选项符合题意;B.平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;
C.直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;
D.等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意.
故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.9、B【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10、D【分析】由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.【详解】解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.二、填空题1、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为 5.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.2、【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设,四边形为正方形,,,点为的中点,,,,,四边形为正方形,,,故答案为:.【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.3、【分析】根据矩形的对角线互相平分且相等可得OA=OD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=6,∴.故答案为:.【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.4、2.5或2.【分析】需要分类讨论:①BE1=E1C,此时点E1是BC的中垂线与AD的交点;②BE=BC,在直角△ABE中,利用勾股定理求得AE的长度,然后求得DE的长度即可.【详解】解:①当BE1=E1C时,点E1是BC的中垂线与AD的交点,;②当BC=BE=5时,在直角△ABE中,AB=4,则,∴.综上所述,线段DE的长为2.5或2.故答案是:2.5或2.【点睛】本题考查矩形的性质和等腰三角形的性质,勾股定理,在此题中,没有确定等腰三角形的底边,所以需要分类讨论,以防漏解.5、12【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【详解】解:∵如图所示,D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DFBC,FEAB,DEAC,∴△DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案为:12.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.三、解答题1、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.【详解】(1),;(2)连接DE,,,,,,.【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.2、(1)见解析;(2)12【分析】(1)由“SAS”可证△ABE≌△CDF;
(2)通过证明BE=DE,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD+AE=BC+CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=32°,∠ADB=22°,
∴∠ABD=∠1-∠ADB=10°,
∵∠ABE=12°,
∴∠DBE=22°,
∴∠DBE=∠ADB=22°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为:12.【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.3、(1)见解析;(2)正方形ABCD的面积为【分析】(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC (三线合一),即BD⊥AC,∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形,∴正方形ABCD的面积=AB2=a2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键.4、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证.【详解】如图,连接,
∵四边形ABCD为平行四边形,∴AO=OC,DO=OB.∵M为AO的中点,N为CO的中点,即∴MO=ON.四边形是平行四边形,∴BM∥DN,BM=DN.【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.5、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;
(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通过证明∠FBC=∠可得 BC,利用∠EC=∠C=180°推出∠EC+∠=180° 得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形.【详解】(1)证明:∵等腰三角形ABC旋转角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠C B=B=AB=BC∴BCF(ASA) (2)解:四边形为菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=a B=B=AB=BC又∵ ∠BD=∠FBC=a ∴∠FBC=∠∴BC ∴∠EC=∠C=180°∴∠EC+∠=180° ∴BCE∴四边形为平行四边形又∵B=BC∴ 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.
相关试卷
这是一份北京课改版第十五章 四边形综合与测试习题,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学第十五章 四边形综合与测试巩固练习,共25页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共29页。