


北京课改版八年级下册第十五章 四边形综合与测试随堂练习题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共32页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
2、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )
A. B. C. D.
3、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
4、平行四边形中,,则的度数是( )
A. B. C. D.
5、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为( )
A. B. C. D.
6、已知中,,,CD是斜边AB上的中线,则的度数是( )
A. B. C. D.
7、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).
A.4 B.10 C.6 D.8
8、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
9、下列图形中,不是中心对称图形的是( )
A. B. C. D.
10、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
A.14或15或16 B.15或16或17 C.15或16 D.16或17
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.
2、菱形ABCD的周长为,对角线AC和BD相交于点O,AO:BO=1:2,则菱形ABCD的面积为________.
3、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.
4、一个多边形,每个外角都是,则这个多边形是________边形.
5、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.
(1)求证:四边形EFGH 是平行四边形
(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________
2、如图,在正方形ABCD中,DF=AE,AE与DF相交于点O.
(1)求证:△DAF≌△ABE;
(2)求∠AOD的度数.
3、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.
(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;
(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出APE的面积.
4、如图,在中,,D是边上的一点,过D作交于点E,,连接交于点F.
(1)求证:是的垂直平分线;
(2)若点D为的中点,且,求的长.
5、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类似的思想提出了如下命题:
③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.
任务要求:
(1)请你从①②③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索;
①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);
②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.
-参考答案-
一、单选题
1、D
【分析】
利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
【详解】
解:四边形OABC是矩形,
,
在中,由勾股定理可知:,
,
弧长为,故在数轴上表示的数为,
故选:.
【点睛】
本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
2、A
【分析】
根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;
【详解】
解:∵ED=EM,MF=FN,
∴EF=DN,
∴DN最大时,EF最大,
∴N与B重合时DN=DB最大,
在Rt△ADH中, ∵∠A=60°
∴AH=2×=1,DH=,
∴BH=AB﹣AH=3﹣1=2,
∴DB=,
∴EFmax=DB=,
∴EF的最大值为.
故选A
【点睛】
本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.
3、C
【分析】
根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.
【详解】
解:①∵四边形ACHI和四边形ABED都是正方形,
∴AI=AC,AB=AD,∠IAC=∠BAD=90°,
∴∠IAC+∠CAB=∠BAD+∠CAB,
即∠IAB=∠CAD,
在△ABI和△ADC中,
,
∴△ABI≌△ADC(SAS),
∴BI=CD,
故①正确;
②过点B作BM⊥IA,交IA的延长线于点M,
∴∠BMA=90°,
∵四边形ACHI是正方形,
∴AI=AC,∠IAC=90°,S1=AC2,
∴∠CAM=90°,
又∵∠ACB=90°,
∴∠ACB=∠CAM=∠BMA=90°,
∴四边形AMBC是矩形,
∴BM=AC,
∵S△ABI=AI•BM=AI•AC=AC2=S1,
由①知△ABI≌△ADC,
∴S△ACD=S△ABI=S1,
即2S△ACD=S1,
故②正确;
③过点C作CN⊥DA交DA的延长线于点N,
∴∠CNA=90°,
∵四边形AKJD是矩形,
∴∠KAD=∠AKJ=90°,S3=AD•AK,
∴∠NAK=∠AKC=90°,
∴∠CNA=∠NAK=∠AKC=90°,
∴四边形AKCN是矩形,
∴CN=AK,
∴S△ACD=AD•CN=AD•AK=S3,
即2S△ACD=S3,
由②知2S△ACD=S1,
∴S1=S3,
在Rt△ACB中,AB2=BC2+AC2,
∴S3+S4=S1+S2,
又∵S1=S3,
∴S1+S4=S2+S3,
即③正确;
④在Rt△ACB中,BC2+AC2=AB2,
∴S3+S4=S1+S2,
∴,
故④错误;
综上,共有3个正确的结论,
故选:C.
【点睛】
本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.
4、B
【分析】
根据平行四边形对角相等,即可求出的度数.
【详解】
解:如图所示,
∵四边形是平行四边形,
∴,
∴,
∴.
故:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
5、C
【分析】
根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.
【详解】
解:∵点P是∠AOB平分线上的一点,,
∴,
∵PD⊥OA,M是OP的中点,
∴,
∴
∵点C是OB上一个动点
∴当时,PC的值最小,
∵OP平分∠AOB,PD⊥OA,
∴最小值,
故选C.
【点睛】
本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.
6、B
【分析】
由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.
【详解】
解:∵∠ACB=90°,∠B=54°,
∴∠A=36°,
∵CD是斜边AB上的中线,
∴CD=AD,
∴∠ACD=∠A=36°.
故选:B.
【点睛】
本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.
7、B
【分析】
根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
【详解】
解:∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵点P,D分别是AF,AB的中点,
∴PD=BF=6,PD//BC,
∴∠PDA=∠CBA,
同理,QD=AE=8,∠QDB=∠CAB,
∴∠PDA+∠QDB=90°,即∠PDQ=90°,
∴PQ==10,
故选:B.
【点睛】
本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
8、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,不符合题意;
C、既是轴对称图形,又是中心对称图形,符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、C
【详解】
解:选项A是中心对称图形,故A不符合题意;
选项B是中心对称图形,故B不符合题意;
选项C不是中心对称图形,故C符合题意;
选项D是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.
10、A
【分析】
由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
【详解】
解:设新多边形的边数为n,
则(n-2)•180°=2340°,
解得:n=15,
①若截去一个角后边数增加1,则原多边形边数为14,
②若截去一个角后边数不变,则原多边形边数为15,
③若截去一个角后边数减少1,则原多边形边数为16,
所以多边形的边数可以为14,15或16.
故选:A.
【点睛】
本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
二、填空题
1、
【分析】
设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.
【详解】
解:设这个正多边形有条边,则
解得:
所以从一个正八边形的一个顶点出发可以引条对角线,
故答案为:
【点睛】
本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为 从边形的一个顶点出发可以引条对角线”是解本题的关键.
2、4
【分析】
根据菱形的性质求得边长,根据AO:BO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.
【详解】
解:如图
四边形是菱形
,
菱形ABCD的周长为,
AO:BO=1:2,
故答案为:4
【点睛】
本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.
3、
【分析】
利用三角形的内角和定理以及折叠的性质,求出,,利用四边形内角和为,即可求出∠2.
【详解】
解:在中,,
在中,,
由折叠性质可知: ,
四边形的内角和为,
,
,,
,
,,且∠1=85°,
,
故答案为:.
【点睛】
本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.
4、六6
【分析】
根据正多边形的性质,边数等于360°除以每一个外角的度数.
【详解】
∵一个多边形的每个外角都是60°,
∴n=360°÷60°=6,
故答案为:六.
【点睛】
本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键.
5、10或14或10
【分析】
利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可.
【详解】
解: 四边形ABCD是平行四边形,
,,,
,,
BF平分∠ABC, CE平分∠BCD,
,,
,,
由等角对等边可知:,,
情况1:当与相交时,如下图所示:
,
,
,
情况2:当与不相交时,如下图所示:
,
,
故答案为:10或14.
【点睛】
本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.
三、解答题
1、(1)见解析;(2)16
【分析】
(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;
(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,
∴,
∴OE=OG,OF=OH,
∴四边形EFGH是平行四边形;
(2)∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,
∴,
∴ ,
∵的周长为2(AB+BC)=32,
∴ ,
∴ ,
由(1)知:四边形EFGH是平行四边形,
∴四边形EFGH的周长为 .
【点睛】
本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.
2、(1)见解析;(2)90°
【分析】
(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,再证明Rt△DAF≌Rt△ABE即可得出结论;
(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠BAE+∠DFA=90°,最后用三角形的内角和定理即可得出结论.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴∠DAB=∠ABC=90°,AD=AB,
在Rt△DAF和Rt△ABE中,
,
∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.
(2)解:由(1)知,△DAF≌△ABE,
∴∠ADF=∠BAE,
∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,
∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.
【点睛】
本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出Rt△DAF≌Rt△ABE是解本题的关键.
3、(1)BP=CE,CE⊥BC;(2)仍然成立,见解析;(3)31
【分析】
(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;
(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;
(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.
【详解】
解:(1)如图1,连接AC,延长CE交AD于点H,
∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠BAC=60°;
∵△APE是等边三角形,
∴AP=AE,∠PAE=60°,
∴∠BAP=∠CAE=60°﹣∠PAC,
∴△BAP≌△CAE(SAS),
∴BP=CE;
∵四边形ABCD是菱形,
∴∠ABP=∠ABC=30°,
∴∠ABP=∠ACE=30°,
∵∠ACB=60°,
∴∠BCE=60°+30°=90°,
∴CE⊥BC;
故答案为:BP=CE,CE⊥BC;
(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:
如图2中,连接AC,设CE与AD交于H,
∵菱形ABCD,∠ABC=60°,
∴△ABC和△ACD都是等边三角形,
∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,
∵△APE是等边三角形,
∴AP=AE,∠PAE=60°,
∴∠CAE=60°+60°+∠DAP=120°+∠DAP,
∴∠BAP=∠CAE,
∴△ABP≌△ACE(SAS),
∴BP=CE,∠ACE=∠ABD=30°,
∴∠DCE=30°,
∵∠ADC=60°,
∴∠DCE+∠ADC=90°,
∴∠CHD=90°,
∴CE⊥AD;
∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;
(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,
∵四边形ABCD是菱形,
∴AC⊥BD BD平分∠ABC,
∵∠ABC=60°,AB=2,
∴∠ABO=30°,
∴AO=AB=,OB=AO=3,
∴BD=6,
由(2)知CE⊥AD,
∵AD∥BC,
∴CE⊥BC,
∵BE=2,BC=AB=2,
∴CE==8,
由(2)知BP=CE=8,
∴DP=2,
∴OP=5,
∴AP===2,
∵△APE是等边三角形,
∴S△AEP=×(2)2=7,
如图4中,当点P在DB的延长线上时,同法可得AP===2,
∴S△AEP=×(2)2=31,
【点睛】
此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.
4、(1)见解析;(2)6
【分析】
(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,则有EC=ED,从而可得点B、E在线段CD的垂直平分线上,从而可得结论;
(2)由D点是AB的中点及BC=BD,可得△BDC是等边三角形,从而由30度的直角三角形的性质可分别求得EC、BE,由AE=BE,即可求得AC的长.
【详解】
(1)∵BC=BD
∴∠BCD=∠BDC,点B在线段CD的垂直平分线上
∵,
∴∠BCD+∠ECD=∠EDC+∠BDC
∴∠ECD=∠EDC
∴EC=ED
∴点E在线段CD的垂直平分线上
∴BE是线段CD的垂直平分线
(2)D点是AB的中点,∠ACB=90゜
∴CD是Rt△ABC斜边上的中线
∴CD=BD
∴CD=BC=BD
∴△BDC是等边三角形
∴∠BCD=∠DBC=60゜
∴∠ECF=90゜-60゜=30゜
由(1)知,BF⊥CD
∴EC=2EF=2,
∴BE=2EC=4
∵DE⊥AB,点D为AB的中点
∴AE=BE=4
∴AC=AE+EC=4+2=6
【点睛】
本题考查了线段垂直平分线的性质定理和判定定理,直角三角形斜边上的中线的性质,30度角的直角三角形的性质,等边三角形的判定与性质;题目虽不难,但涉及的知识点比较多,灵活运用这些知识是解题的关键.
5、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.
【分析】
(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;
(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;
②连接BD、CE,根据全等三角形的判定定理和性质可得:, ,,,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明.
【详解】
解:(1)如选命题①,证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCAN中,
,
∴ ,
∴ ;
如选命题②,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
如选命题③,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
(2)①根据(1)中规律可得:当时,结论成立;
②答:当时,成立.
证明:如图所示,连接BD、CE,
在和中,
,
∴ ,
∴ ,,,
∵ ,
∴ ,
∵ ,.
∴ ,
又∵ ,
∴ ,
在和中,
,
∴ ,
∴ .
【点睛】
题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共30页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共29页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
