搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析练习题

    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析练习题第1页
    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析练习题第2页
    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析练习题第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十五章 四边形综合与测试一课一练

    展开

    这是一份初中第十五章 四边形综合与测试一课一练,共25页。
    京改版八年级数学下册第十五章四边形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形中,,则的度数是(    A. B. C. D.2、下列图形中,既是中心对称图形又是轴对称图形的有几个(  )A.1个 B.2个 C.3个 D.4个3、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是(    A.三角形 B.四边形 C.五边形 D.六边形4、下列图形既是中心对称图形,又是轴对称图形的是(    A. B.C. D.5、下列测量方案中,能确定四边形门框为矩形的是(    A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等6、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是(  )A.7 B.8 C.9 D.107、在锐角△ABC中,∠BAC=60°,BNCM为高,PBC的中点,连接MNMPNP,则结论:①NPMP;②ANABAMAC;③BN=2AN;④当∠ABC=60°时,MNBC,一定正确的有(    A.①②③ B.②③④ C.①②④ D.①④8、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或29、如图,四边形ABCD是平行四边形,下列结论中错误的是(    A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,ACBDC.当▱ABCD是正方形时,ACBD D.当▱ABCD是菱形时,ABAC10、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线ly=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )
    A.7 B.6 C.4 D.8第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点O是正方形ABCD的称中心O,互相垂直的射线OMON分别交正方形的边ADCDEF两点,连接EF;已知(1)以点EOFD为顶点的图形的面积为________________;(2)线段EF的最小值是_______________.2、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.3、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).4、若点Am,5)与点B(-4,n)关于原点成中心对称,则mn=________.5、如图,平面直角坐标系中,有三点,以ABO三点为顶点的平行四边形的另一个顶点D的坐标为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在长方形ABCD中,AB=3,BC=4,点EBC边上一点,连接AE,将∠B沿直线AE折叠,使点B落在点处.(1)如图1,当点E与点C重合时,AD交于点F,求证:FAFC(2)如图2,当点E不与点C重合,且点在对角线AC上时,求CE的长.2、如图,中,(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,连接,交于点O.求证:四边形是菱形.3、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE4、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且点.(1)求证:四边形是平行四边形;(2)当是多少度时,四边形为菱形?试说明理由.5、如图,在中,对角线ACBD交于点OAB=10,AD=8,ACBC,求(1)的面积;(2)△AOD的周长.
      -参考答案-一、单选题1、B【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.2、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.4、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意.【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.5、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.6、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.7、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】CMBN分别是高∴△CMB、△BNC均是直角三角形∵点PBC的中点PMPN分别是两个直角三角形斜边BC上的中线故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜AB=2ANAC=2AMANAB=AMAC=1:2即②正确RtABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形CMABBNACMN分别是ABAC的中点MN是△ABC的中位线MNBC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.8、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.9、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,ACBD,正确,故B不符合题意;当▱ABCD是正方形时,ACBD,正确,故C不符合题意;当▱ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.10、A【分析】如图所示,连接ACOB交于点D,先求出C和A的坐标,然后根据矩形的性质得到DAC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接ACOB交于点DC是直线y轴的交点,∴点C的坐标为(0,2),OA=4,A点坐标为(4,0),∵四边形OABC是矩形,DAC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为故选A.
    【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.二、填空题1、1        【分析】(1)连接OAOD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OEADOE最小,则EF最小,求解此时在OE即可解答.【详解】解:(1)连接OA、OD∵四边形ABCD是正方形,OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,∴∠AOE+∠DOE=90°,OEOF∴∠DOF+∠DOE=90°,∴∠AOE=∠DOF在△OAE和△ODF中,∴△OAE≌△ODFASA),SOAE=SODFS四边形EOFD = SODE+SODF= SODE+SOAE= SAOD= S正方形ABCDAD=2,S四边形EOFD= ×4=1,故答案为:1;(2)∵△OAE≌△ODFOE=OF∴△EOF为等腰直角三角形,则EF=OEOEADOE最小,即EF最小,OA=OD,∠AOD=90°,OE=AD=1,EF的最小值故答案为:【点睛】本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.2、10【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.3、AC=BDACBD(答案不唯一)【分析】根据正方形的判定定理,即可求解.【详解】解:当AC=BD时,平行四边形ABCD为菱形,又由ACBD,可得菱形ABCD为正方形,所以当AC=BDACBD时,平行四边形ABCD为正方形.故答案为:AC=BDACBD(答案不唯一)【点睛】本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.4、【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可.【详解】解:∵点Am,5)与点B(-4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1.【点睛】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键.5、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出AD的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点ABO的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBOD的横坐标是3+6=9,纵坐标是4,D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.三、解答题1、(1)见解析;(2)CE=【分析】(1)根据平行线的性质及折叠性质证明∠FAC=∠FCA即可.(2)由题意可得,根据勾股定理求出AC=5,进而求出B'C=2,设CE= x.然后在Rt中,根据勾股定理EC2=2+2列方程求解即可;【详解】解:(1)如图1,
     ∵四边形ABCD是矩形,ADBC∴∠FAC=∠ACB∵∠ACB=∠ACF∴∠FAC=∠FCAFA=FC (2)∵,如图2, 设CE= x
     ∵四边形ABCD是矩形,∴∠B=90°,AC2=AB2+BC2= 32+42=25,AC=5,由折叠可知:=5-3=2,Rt中,EC2=2+2x2=(4-x2+22x=CE=【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.2、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线,再截取即可;(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.【详解】(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.(2)证明:如图所示:中,又∵∴四边形是菱形.【点睛】本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明.3、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明【详解】解:四边形ABCD是矩形,中, 【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.4、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析【分析】(1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;(2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.【详解】证明:(1)∵又∵同理可得:又∵∴四边形BEFG是平行四边形;(2)当时,四边形EFGB为菱形.理由如下:∵四边形BEFG是菱形,由(1)得:为等边三角形,【点睛】题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.5、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
     BC=AD=8ACBC∴∠ACB=90°RtABC中,由勾股定理得AC2=AB2-BC2(2)∵四边形ABCD是平行四边形,且AC=6∵∠ACB=90°,BC=8【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试课时训练:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共33页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共23页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map