初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共23页。
京改版八年级数学下册第十五章四边形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A.7 B.8 C.9 D.102、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )A.2 B.4 C.4或 D.2或3、一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.104、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )A.20º B.25º C.30º D.35º5、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )A. B. C. D.6、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )A.①②③ B.②③④ C.①②④ D.①④7、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).A.4 B.10 C.6 D.88、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )A.A,B,C都不在 B.只有BC.只有A,C D.A,B,C9、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE10、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A.三角形 B.四边形 C.五边形 D.六边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC中,D、E分别是AB、AC的中点,若DE=4cm,则BC=_____cm.
2、若一个菱形的两条对角线的长为3和4,则菱形的面积为___________.3、若点P(m,﹣2)与Q(﹣4,2)关于原点对称,则m=_____.4、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为____.5、若正边形的每个内角都等于120°,则这个正边形的边数为________.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,,求线段EF的长.2、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.(1)则∠CDF= (2)若ED=CD,AE=BC,求证:AF=BF.3、如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE= °时,四边形BFDE是菱形.4、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=20.点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQ⊥AB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与Rt△ABC重叠部分图形的面积为S(S>0),点P的运动时间为t秒.(1)①BC的长为 ;②用含t的代数式表示线段PQ的长为 ;(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.5、“三等分一个任意角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的.有人曾利用如图所示的图形进行探索,其中ABCD是长方形,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.请写出∠ECB和∠ACB的数量关系,并说明理由. -参考答案-一、单选题1、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2、D【分析】根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.3、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.4、C【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.5、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为3+,∴AB+BC=3+-2=1+.等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2AB•BC=4+2,∵AB2+BC2=AC2=4,∴2AB•BC=2,AB•BC=,即三角形的面积为×AB•BC=.故选:B.【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.6、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.7、B【分析】根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD,∵,,,∴,∴为直角三角形,∵D为AC中点,∴,∵覆盖半径为300 ,∴A、B、C三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.9、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
∴结论正确的是D选项.
故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.10、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.二、填空题1、8【分析】运用三角形的中位线的知识解答即可.【详解】解:∵△ABC中,D、E分别是AB、AC的中点∴DE是△ABC的中位线,∴BC=2DE=8cm.故答案是8.【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.2、6【分析】由题意直接由菱形的面积等于对角线乘积的一半进行计算即可.【详解】解:菱形的面积.故答案为:6.【点睛】本题考查菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.3、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P1(-x,-y).【详解】解:因为点P(m,﹣2)与Q(﹣4,2)关于原点对称,所以m-4=0,即m=4,故答案为:4.【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键.4、(-2,-7)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点(2,-7)关于y轴对称的点的坐标是(-2,-7).故答案为:(-2,-7).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.【详解】解:设所求正边形边数为,则,解得,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.三、解答题1、(1)见解析;(2)2【分析】(1)利用ASA定理证明△AEB≌△AED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答.【详解】解:(1)证明:∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵点F是BC的中点,∴BF=FC,∴EF是△BCD的中位线,∴EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵点F是BC的中点,∴BF=FC,∴EF是△BCD的中位线,∴EF=CH=(AH-AC)=2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2、(1)54°;(2)见解析.【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;(2)连接AD、DB,然后证明△DEA≌△DCB可得AD=DB,再根据等腰三角形的性质可得AF=BF.【详解】解:(1)∵五边形ABCDE的内角都相等,∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,∵DF⊥AB,∴∠DFB=90°,∴∠CDF=360°﹣90°﹣108°﹣108°=54°,故答案为:54°.(2)连接AD、DB,在△AED和△BCD中,,∴△DEA≌△DCB(SAS),∴AD=DB,∵DF⊥AB,∴AF=BF.【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.3、(1)见解析;(2)12【分析】(1)由“SAS”可证△ABE≌△CDF;
(2)通过证明BE=DE,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD+AE=BC+CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=32°,∠ADB=22°,
∴∠ABD=∠1-∠ADB=10°,
∵∠ABE=12°,
∴∠DBE=22°,
∴∠DBE=∠ADB=22°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为:12.【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.4、(1)①;②;(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s.【分析】(1)①由勾股定理可求解;
②由直角三角形的性质可求解;
(2)分两种情况讨论,由QM的长度为10,列出方程可求解;
(3)分两种情况讨论,由面积公式可求解;
(4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解.【详解】解:(1)①∵∠ACB=90°,∠B=30°,AB=20,∴AC==10,
∴BC=;②∵PQ⊥AB,∴∠BQP=90°,∵∠B=30°,
∴PQ=,由题意得:BP=2t,
∴PQ=t,
故答案为:t;(2)在Rt△PQB中,BQ==3t,
当点M与点Q相遇,20=AM+BQ=4t+3t,
∴t=,
当0<t<时,MQ=AB-AM-BQ,
∴20-4t-3t=10,
∴t=,
当<t≤=5时,MQ=AM+BQ-AB,
∴4t+3t-20=10,
∴t=,
综上所述:当QM的长度为10时,t的值为或;(3)当0<t<时,S=PQ·MQ=t×(20-7t)=-t2+20t;
当<t≤5时,如图,
∵四边形PQMN是矩形,
∴PN=QM=7t-20,PQ=t,
∴∠B=30°,∴ME∶BE∶BM=1∶2∶,∵BM=20-4t,
∴ME=,
∴S==;(4)如图,若NQ⊥AC,
∴NQ∥BC,
∴∠B=∠MQN=30°,
∵MN∶NQ∶MQ=1∶2∶,∵MQ=20-7t,MN=PQ=,
∴,
∴t=2,如图,若NQ⊥BC,
∴NQ∥AC,
∴∠A=∠BQN=90°-∠B=60°,
∴∠PQN=90°-∠BQN=30°,
∴PN∶NQ∶PQ=1∶2∶,∵PN=MQ=7t-20,PQ=,
∴,
∴t=,
综上所述:当t=2s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.【点睛】本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.5、∠ACB=3∠ECB,见解析.【分析】由矩形的对边平行可得∠F=∠ECB,由外角等于和它不相邻的两个内角的和可得∠AGC=2∠F,那么∠ECB=∠F,所以∠ACB=3∠ECB.【详解】解:∠ACB=3∠ECB. 理由如下:在△AGF中,∠AGC=∠F+∠GAF=2∠F.∵∠ACG=∠AGC,∴∠ACG=2∠F.∵AD//BC,∴∠ECB=∠F.∴∠ACB=∠ACG+∠BCE=3∠F.故∠ACB=3∠ECB.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.
相关试卷
这是一份数学八年级下册第十五章 四边形综合与测试当堂达标检测题,共29页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共31页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共27页。试卷主要包含了如图,在六边形中,若,则,下列图案中,是中心对称图形的是等内容,欢迎下载使用。