搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形必考点解析练习题

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形必考点解析练习题第1页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形必考点解析练习题第2页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形必考点解析练习题第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第十五章 四边形综合与测试课后作业题

    展开

    这是一份初中数学第十五章 四边形综合与测试课后作业题,共26页。试卷主要包含了下列说法中,不正确的是,下列说法中,正确的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(   A. B. C. D.2、如图,矩形ABCD的对角线ACBD相交于点O,若∠AOD=120°,AC=16,则AB的长为(  )A.16 B.12 C.8 D.43、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.4、下列说法中,不正确的是(    A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形5、一个多边形每个外角都等于36°,则这个多边形是几边形(     A.7 B.8 C.9 D.106、下列说法中,正确的是(    A.若,则B.90′=1.5°C.过六边形的每一个顶点有4条对角线D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查7、将一张长方形纸片ABCD按如图所示的方式折叠,AEAF为折痕,点BD折叠后的对应点分别为,若=10°,则∠EAF的度数为(  )A.40° B.45° C.50° D.55°8、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C. D.9、在锐角△ABC中,∠BAC=60°,BNCM为高,PBC的中点,连接MNMPNP,则结论:①NPMP;②ANABAMAC;③BN=2AN;④当∠ABC=60°时,MNBC,一定正确的有(    A.①②③ B.②③④ C.①②④ D.①④10、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是(    A.180° B.220° C.240° D.260°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCDAD=5,AB=8,点A的坐标为(-3,0)点C的坐标为______.2、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.3、若点Pm,﹣2)与Q(﹣4,2)关于原点对称,则m=_____.4、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.5、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数y=- x+3的图像分别与x轴、y轴交于点AB,以线段AB为边在第一象限内作等腰直角三角形ABC∠BAC=90°,(1)求过BC两点的直线的解析式.(2)作正方形ABDC,求点D的坐标.2、如图,中,(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,连接,交于点O.求证:四边形是菱形.3、如图,四边形ABCD为平行四边形,∠BAD的平分线AFCD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE(2)BEAF4、(3)点PAC上一动点,则PE+PF最小值为.5、如图,△AOB是等腰直角三角形.(1)若A(﹣4,1),求点B的坐标;(2)ANy轴,垂足为NBMy轴,垂足为点M,点PAB的中点,连PM,求∠PMO度数;(3)在(2)的条件下,点QON的中点,连PQ,求证:PQAM -参考答案-一、单选题1、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.2、C【分析】由题意可得AOBOCODO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,AC=2AO=2COBD=2BO=2DOACBD=16,OAOB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,ABAOBO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.3、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.4、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.5、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.6、B【分析】由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.【详解】解:若,则故A不符合题意;90′=故B符合题意;过六边形的每一个顶点有3条对角线,故C不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;故选:B.【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.7、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠DAF,∠BAE=∠BAE,用αβ表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β根据折叠性质可知:DAF=∠DAF,∠BAE=∠BAE∵∠BAD′=10°,∴∠DAF=10°+βBAE=10°+α∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,α+β=30°,∴∠EAF=∠BAD′+∠DAE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8、D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.是轴对称图形,不是中心对称图形,故此选项符合题意;D.是轴对称图形,也是中心对称图形,故此选项不合题意.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】CMBN分别是高∴△CMB、△BNC均是直角三角形∵点PBC的中点PMPN分别是两个直角三角形斜边BC上的中线故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜AB=2ANAC=2AMANAB=AMAC=1:2即②正确RtABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形CMABBNACMN分别是ABAC的中点MN是△ABC的中位线MNBC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.10、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,故选C.【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.二、填空题1、(8,4)【分析】先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.【详解】解:∵点A的坐标为(-3,0),在Rt△ADO中,AD=5, AO=3,OD==D(0,4),∵平行四边形ABCDAB=CD=8,AB∥CDABx轴上,CDx轴,CD两点的纵坐标相同,C(8,4) .故答案为(8,4).【点睛】本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.2、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x度,则内角为(5x−60)度由题意得:解得:则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.3、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点Pxy)关于原点O的对称点是P1(-x,-y).【详解】解:因为点Pm,﹣2)与Q(﹣4,2)关于原点对称,所以m-4=0,m=4,故答案为:4.【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键.4、【分析】设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.【详解】解:设这个正多边形有条边,则 解得: 所以从一个正八边形的一个顶点出发可以引条对角线,故答案为:【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为边形的一个顶点出发可以引条对角线”是解本题的关键.5、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为 5.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.三、解答题1、(1),(2)(3,7)【分析】(1)先根据一次函数的解析式求出AB两点的坐标,再作CEx轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;(2)由正方形的性质以及△ABO≌△CAE,同理可得△ABO≌△BDM,进而可得点D的坐标.【详解】(1)∵一次函数y=-x+3中,x=0得:y=3,令y=0,解得x=4,B的坐标是(0,3),A的坐标是(4,0),如图,作CEx轴于点E
     ∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO在△ABO与△CAE中,∴△ABO≌△CAE(AAS),OB=AE=3,OA=CE=4,OE=OA+AE=7,则点C的坐标是(7,4),设直线BC的解析式是y=kx+b(k≠0),根据题意得:解得∴直线BC的解析式是y=x+3.(2)如图,作DMy轴于点M
     ∵四边形ABDC为正方形,由(1)知△ABO≌△CAE同理可得:△ABO≌△BDMDM=OB=3,BM=OA=4,OM=OB+BM=7,则点D的坐标是(3,7).【点睛】本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形.2、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线,再截取即可;(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.【详解】(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.(2)证明:如图所示:中,又∵∴四边形是菱形.【点睛】本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明.3、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出ADBC,得出∠D=∠ECF,则可证明△ADE≌△FCEASA);(2)由平行四边形的性质证出ABBF,由全等三角形的性质得出AEFE,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD为平行四边形,ADBC∴∠D=∠ECFECD的中点,EDEC在△ADE和△FCE中,∴△ADE≌△FCEASA);(2)∵四边形ABCD为平行四边形,ABCDADBC∴∠FAD=∠AFB又∵AF平分∠BAD∴∠FAD=∠FAB∴∠AFB=∠FABABBF∵△ADE≌△FCEAEFEBEAF【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.4、见解析【分析】(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点FPB三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.【详解】(1)解:△ACF是等腰三角形,理由如下:如图,由折叠可知,∠1=∠2,∵四边形ABCD是矩形,ABCD∴∠2=∠3,∴∠1=∠3,AF=CF∴△ACF是等腰三角形;(2)∵四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,∠D=90°,FD=x,则AF=CF=8-xRtAFD中,根据勾股定理得AD2+DF2=AF2∴42+x2=(8-x2解得x=3  ,即DF=3,CF=8-3=5,(3)如图,连接PB根据折叠得:CE=CB,∠ECP=∠BCPCP=CP∴△ECP≌△BCPPE=PBPE+PF=PE+PB∴当点FPB三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,∠BCF=90°,PE+PF最小值为【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键.5、(1)(1,4);(2)45°;(3)见解析
     【分析】(1)过点AAEx轴于E,过点BBFx轴于F,证明△OAE≌△BOF得到OF=AEBF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);(2)延长MPAN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)连接OPAM,取BM中点G,连接GP,则GP是△ABM的中位线,AMGP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQPG,即PGAM【详解】解:(1)如图所示,过点AAEx轴于E,过点BBFx轴于F∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOFAO=OB∴△OAE≌△BOFAAS),OF=AEBF=OE∵点A的坐标为(-4,1),OF=AE=1,BF=OE=4,∴点B的坐标为(1,4);(2)如图所示,延长MPAN交于HAHy轴,BMy轴,BM∥AN∴∠MBP=∠HAP,∠AHP=∠BMP∵点PAB的中点,AP=BP∴△APH≌△BPMAAS),AH=BMA点坐标为(-4,1),B点坐标为(1,4),AN=4,OM=4,BM=1,ON=1,HN=AN-AH=AN-BM=3,MN=OM-ON=3,HN=MN∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如图所示,连接OPAM,取BM中点G,连接GPGP是△ABM的中位线,AM∥GPQON的中点,GBM的中点,ON=BM=1,PAB中点,△AOB是等腰直角三角形,∠AOB=90°,,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ由(2)得∠GBP=∠BAN∴∠GBP=∠QOP∴△PQO≌△PGBSAS),∴∠OPQ=∠BPG∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,PQPGPGAM【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件. 

    相关试卷

    2020-2021学年第十五章 四边形综合与测试习题:

    这是一份2020-2021学年第十五章 四边形综合与测试习题,共21页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中第十五章 四边形综合与测试一课一练:

    这是一份初中第十五章 四边形综合与测试一课一练,共25页。

    数学八年级下册第十五章 四边形综合与测试课时作业:

    这是一份数学八年级下册第十五章 四边形综合与测试课时作业,共30页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map