北京课改版八年级下册第十五章 四边形综合与测试单元测试当堂达标检测题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试单元测试当堂达标检测题,共26页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE2、一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.103、下列图形既是中心对称图形,又是轴对称图形的是( )A. B.C. D.4、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).A. B. C. D.5、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5 B.2 C. D.6、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )A. B. C. D.7、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )
A.2 B.2或1.5 C.2.5 D.2.5或28、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为( )A.6 B.6.5 C.10 D.139、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( ).A.1,1,2, B.1,1,1 C.1,2,2 D.1,1,610、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A.180° B.220° C.240° D.260°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.(1)以点E,O,F,D为顶点的图形的面积为________________;(2)线段EF的最小值是_______________.2、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.3、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角线AB为半径画圆,圆与数轴的交点对应的数是 _____.4、如图,已知在矩形中,,,将沿对角线AC翻折,点B落在点E处,连接,则的长为_________.
5、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.三、解答题(5小题,每小题10分,共计50分)1、如图,□ABCD中,点E、F分别在AB、CD上,且BE=DF.求证:AF=EC.
2、如图,中,.(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,,连接,交于点O.求证:四边形是菱形.3、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.4、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).5、如图1,在平面直角坐标系中,且;(1)试说明是等腰三角形;(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.①若的一条边与BC平行,求此时点M的坐标;②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由. -参考答案-一、单选题1、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
∴结论正确的是D选项.
故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.2、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.3、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意.【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.4、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.5、D【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】解:四边形OABC是矩形,,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:.【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.6、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.7、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
∵AB=BC=10厘米,AE=4厘米,
∴BE=CP=6厘米,
∴BP=10-6=4厘米,
∴运动时间t=4÷2=2(秒);
当,即点Q的运动速度与点P的运动速度不相等,
∴BP≠CQ,
∵∠B=∠C=90°,
∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
∴点P,Q运动的时间t=(秒).综上t的值为2.5或2.
故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.8、B【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边=,∴此直角三角形斜边上的中线的长==6.5.故选:B.【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.9、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.10、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,∴;故选C.【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.二、填空题1、1 【分析】(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.【详解】解:(1)连接OA、OD,∵四边形ABCD是正方形,∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,∴∠AOE+∠DOE=90°,∵OE⊥OF,∴∠DOF+∠DOE=90°,∴∠AOE=∠DOF,在△OAE和△ODF中,,∴△OAE≌△ODF(ASA),∴S△OAE=S△ODF,∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,∵AD=2,∴S四边形EOFD= ×4=1,故答案为:1;(2)∵△OAE≌△ODF,∴OE=OF,∴△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,即EF最小,∵OA=OD,∠AOD=90°,∴OE=AD=1,∴EF的最小值,故答案为:.【点睛】本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.2、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:,解得:,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.3、或.【分析】根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可.【详解】解:∵以单位长度为边长画一个正方形,∴正方形面积为1,∴,∴AB=,∵点A在1的位置,∴圆与数轴的交点对应的数为或.故答案为或.【点睛】本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键4、【分析】过点E作EF⊥AD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解.【详解】解:如图所示:过点E作EF⊥AD于点F,
有折叠的性质可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,设CG=x,则DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键.5、10【分析】过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.【详解】解:过E作EF⊥AD于F,∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°, ∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四边形ABEF为矩形,∴AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在Rt△FEM中,根据勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案为10.【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.三、解答题1、证明见解析【分析】先证明再证明可得四边形是平行四边形,于是可得结论.【详解】解: □ABCD, BE=DF,
∴AE=CF,AE//CF 四边形是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.2、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线,再截取即可;(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.【详解】(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.(2)证明:如图所示:∵,,∴,在与中,,∴;∴,又∵,∴四边形是菱形.【点睛】本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明.3、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.【详解】(1)答案如下图所示:
分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,是Rt△ABC上的斜边的中线,,DE、DF分别是ADC,∠BDC的角平分线,,, , ,, , , 在四边形CEDF中,, 四边形CEDF是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.4、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案.【详解】解:(1)如图所示:①②③都是轴对称图形;(2)如图所示:④⑤都是中心对称图形..【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.5、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】(1)设,,,则,由勾股定理求出,即可得出结论;(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;(3)①分当时,;当时,;得出方程,解方程即可;②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.【详解】解:(1)证明:设,,,则,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),故答案为:12,0;-8,0;0,16;(3)①如图3-1所示,当MN∥BC时,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M为AB的中点,∵,∴,∴,∴点M的坐标为(2,0);如图3-2所示,当ON∥BC时,同理可得,∴,∴M点的坐标为(4,0);∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,∵E是AC的中点,∠AOC=90°,,∴,∴此时M的坐标为(0,10);如图3-4所示,当时,∴此时M点与A点重合,∴M点的坐标为(12,0);如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,∵OE=AE,EF⊥OA,∴,∴,设,则,∵,∴,解得,∴M点的坐标为(,0);综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.【点睛】本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共33页。试卷主要包含了如图,M等内容,欢迎下载使用。
这是一份初中数学第十五章 四边形综合与测试精练,共26页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份数学第十五章 四边形综合与测试练习题,共23页。