北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共23页。
京改版八年级数学下册第十五章四边形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中,不正确的是( )A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形2、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A.三角形 B.四边形 C.五边形 D.六边形3、下列四个图案中,是中心对称图形的是( )A. B.C. D.4、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )A. B. C. D.5、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A. B. C. D.6、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为( )A.7 B. C.8 D.97、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是( )A.75° B.60° C.55° D.40°8、下图是文易同学答的试卷,文易同学应得( )A.40分 B.60分 C.80分 D.100分9、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )A.菱形 B.矩形 C.正方形 D.三角形10、下列图形中,是中心对称图形的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、正方形的一条对角线长为4,则这个正方形面积是_________.2、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.3、如图,点E,F在正方形ABCD的对角线AC上,AC=10,AE=CF=3,则四边形BFDE的面积为 _____.4、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.5、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.三、解答题(5小题,每小题10分,共计50分)1、如图:在中,,,点为的中点,点为直线上的动点(不与点,重合),连接,,以为边在的上方作等边,连接.(1)是________三角形;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.2、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.(1)求证:;(2)若,,求 BG的长.3、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).4、如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE= °时,四边形BFDE是菱形.5、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数. -参考答案-一、单选题1、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D.【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.2、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.3、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.4、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【详解】解: 矩形ABCD, 设BE=x, ∵AE为折痕, ∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°, Rt△ABC中,∴Rt△EFC中,,EC=2-x, ∴, 解得:, 则点E到点B的距离为:. 故选:C.【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.5、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN, ∴EF=DN, ∴DN最大时,EF最大, ∴N与B重合时DN=DB最大,在Rt△ADH中, ∵∠A=60° ∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2, ∴DB=, ∴EFmax=DB=, ∴EF的最大值为.故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.6、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90,D是边AB的中点,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.7、C【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF=∠B=55°,故选:C.【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.8、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键9、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵、、、分别是、、、的中点,∴,,,∴四边形是平行四边形,∵,∴,∴平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.10、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.二、填空题1、8【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.【详解】解:设边长为,对角线为故答案为:.【点睛】本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.2、或或3【分析】过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三种情况:①当AB=BP=3时,如图1,过B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面积=;②当AB=AP=3时,如图2,∵BM=,∴△PAB的面积S=;③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,∵四边形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面积;即△PAB的面积为或或3.故答案为:或或3.【点睛】本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.3、20【分析】连接BD,交AC于O,根据题意和正方形的性质可求得EF=4,AC⊥BD,由即可求解.【详解】解:如图,连接BD,交AC于O,∵四边形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴ 故答案为:20.【点睛】本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键.4、10【分析】过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.【详解】解:过E作EF⊥AD于F,∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°, ∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四边形ABEF为矩形,∴AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在Rt△FEM中,根据勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案为10.【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.5、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.【详解】解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,∴m=﹣2021,n=2020,∴m+n=﹣1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.三、解答题1、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明△OBC是等边三角形;
(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到.【详解】(1)∵∠ACB=90°,∠A=30°,O是AB的中点,∴,∴△OBC是等边三角形,故答案为:等边;(2)由(1)可知,,,是等边三角形,,,,即,在和中,,;(3)成立,证明:由(1)可知,,,是等边三角形,,,,即,在和中,,.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.2、(1)见解析;(2)【分析】(1)由正方形的性质可得,,由的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE;(2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长【详解】(1)∵BF⊥DE∴∠BFE=90°∵四边形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE ∴,在中,【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.3、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案.【详解】解:(1)如图所示:①②③都是轴对称图形;(2)如图所示:④⑤都是中心对称图形..【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.4、(1)见解析;(2)12【分析】(1)由“SAS”可证△ABE≌△CDF;
(2)通过证明BE=DE,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD+AE=BC+CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=32°,∠ADB=22°,
∴∠ABD=∠1-∠ADB=10°,
∵∠ABE=12°,
∴∠DBE=22°,
∴∠DBE=∠ADB=22°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为:12.【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.5、这个多边形的边数是6【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n,由题意得:(n-2)×180°=2×360°,解得n=6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试,共25页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共21页。试卷主要包含了下列∠A,以下分别是回收等内容,欢迎下载使用。