![2021-2022学年度京改版八年级数学下册第十五章四边形综合测评试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12704703/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十五章四边形综合测评试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12704703/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十五章四边形综合测评试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12704703/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第十五章 四边形综合与测试巩固练习
展开
这是一份2020-2021学年第十五章 四边形综合与测试巩固练习,共32页。试卷主要包含了下列∠A,下列说法中,不正确的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列测量方案中,能确定四边形门框为矩形的是( )
A.测量对角线是否互相平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
2、下列图标中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
3、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为( )
A.16 B.12 C.8 D.4
4、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )
A.20º B.25º C.30º D.35º
5、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
6、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )
A.1:2:3:4 B.1:4:2:3
C.1:2:2:1 D.3:2:3:2
7、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )
A.2 B.4 C.4或 D.2或
8、下列说法中,不正确的是( )
A.四个角都相等的四边形是矩形
B.对角线互相平分且平分每一组对角的四边形是菱形
C.正方形的对角线所在的直线是它的对称轴
D.一组对边相等,另一组对边平行的四边形是平行四边形
9、下列图形中,是中心对称图形的是( )
A. B.
C. D.
10、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,矩形ABCD的两条对角线AC,BD交于点O,∠AOB=60°,AB=3,则矩形的周长为 _____.
2、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.
3、已知一个多边形内角和1800度,则这个多边形的边数_____.
4、若点P(m,﹣2)与Q(﹣4,2)关于原点对称,则m=_____.
5、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在平面直角坐标系中,且;
(1)试说明是等腰三角形;
(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
①若的一条边与BC平行,求此时点M的坐标;
②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.
2、△ABC和△GEF都是等边三角形.
问题背景:如图1,点E与点C重合且B、C、G三点共线.此时△BFC可以看作是△AGC经过平移、轴对称或旋转得到.请直接写出得到△BFC的过程.
迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为△ABC中线CD上一点,延长GF交BC于点H,求证:.
联系拓展:如图3,AB=12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列).当最小时,则△MDG的面积为_______.
3、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且AD=AF.
(1)判断四边形ABFC的形状并证明;
(2)若AB=3,∠ABC=60°,求EF的长.
4、如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.
(1)求证:△BEF≌△CDF.
(2)连接BD,CE,若∠BFD=2∠A,求证四边形BECD是矩形.
5、如图,中,.
(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接,,连接,交于点O.求证:四边形是菱形.
-参考答案-
一、单选题
1、D
【分析】
由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
【详解】
解:A、∵对角线互相平分的四边形是平行四边形,
∴对角线互相平分且相等的四边形才是矩形,
∴选项A不符合题意;
B、∵两组对边分别相等是平行四边形,
∴选项B不符合题意;
C、∵对角线互相平分且相等的四边形才是矩形,
∴对角线相等的四边形不是矩形,
∴选项C不符合题意;
D、∵对角线交点到四个顶点的距离都相等,
∴对角线互相平分且相等,
∵对角线互相平分且相等的四边形是矩形,
∴选项D符合题意;
故选:D.
【点睛】
本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
2、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
3、C
【分析】
由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.
【详解】
解:∵四边形ABCD是矩形,
∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,
∴OA=OB=8,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AB=AO=BO=8,
故选:C.
【点睛】
本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.
4、C
【分析】
依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.
【详解】
∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.
【点睛】
考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.
5、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
6、D
【分析】
两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.
【详解】
解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.
故选:D.
【点睛】
本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
7、D
【分析】
根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
【详解】
解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.
【点睛】
本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
8、D
【分析】
根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
【详解】
解:A、四个角都相等的四边形是矩形,说法正确;
B、正方形的对角线所在的直线是它的对称轴,说法正确;
C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;
D、一组对边相等且平行的四边形是平行四边形,原说法错误;
故选:D.
【点睛】
本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.
9、D
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
【详解】
A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.
10、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,
,
∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
二、填空题
1、##
【分析】
根据矩形性质得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等边三角形AOB,求出BD,根据勾股定理求出AD即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,
∴OA=OB=OC=OD,
∵∠AOB=60°,OB=OA,
∴△AOB是等边三角形,
∵AB=3,
∴OA=OB=AB=3,
∴BD=2OB=6,
在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,
∵四边形ABCD是矩形,
∴AB=CD=3,AD=BC=3,
∴矩形ABCD的周长是AB+BC+CD+AD=6+6.
故答案为:6+6.
【点睛】
本题考查了矩形性质,等边三角形的性质和判定,勾股定理等知识点,关键是求出AD的长.
2、或或3
【分析】
过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:,
有三种情况:
①当AB=BP=3时,如图1,过B作BM⊥AC于M,
S△ABC=,
,
解得:,
∵AB=BP=3,BM⊥AC,
∴,
∴AP=AM+PM=,
∴△PAB的面积=;
②当AB=AP=3时,如图2,
∵BM=,
∴△PAB的面积S=;
③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,
∵四边形ABCD是矩形,NQ⊥AC,
∴PN∥BC,
∵AN=BN,
∴AP=CP,
∴,
∴△PAB的面积;
即△PAB的面积为或或3.
故答案为:或或3.
【点睛】
本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.
3、12
【分析】
设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.
【详解】
解:设这个多边形的边数是n,
依题意得,
∴,
∴.
故答案为:12.
【点睛】
考查了多边形的内角和定理,关键是根据n边形的内角和为解答.
4、4
【分析】
两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P1(-x,-y).
【详解】
解:因为点P(m,﹣2)与Q(﹣4,2)关于原点对称,
所以m-4=0,
即m=4,
故答案为:4.
【点睛】
本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键.
5、8
【分析】
证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.
【详解】
解:∵四边形ABCD是平行四边形,
∴,AB=CD,
∵,
∴四边形ABDE是平行四边形,
∴DE=CD=,,
过点E作EH⊥BF于H,
∵,
∴∠ECH=,
∴CH=EH,
∵,,
∴CH=EH=4,
∵∠EHF=90°,,
∴EF=2EH=8,
故答案为:8.
【点睛】
此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.
三、解答题
1、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】
(1)设,,,则,由勾股定理求出,即可得出结论;
(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
(3)①分当时,;当时,;得出方程,解方程即可;
②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
【详解】
解:(1)证明:设,,,则,
在中,,
,
∴是等腰三角形;
(2)∵,,
∴,
∴,,,.
∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
故答案为:12,0;-8,0;0,16;
(3)①如图3-1所示,
当MN∥BC时,
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=BM,
∴M为AB的中点,
∵,
∴,
∴,
∴点M的坐标为(2,0);
如图3-2所示,当ON∥BC时,
同理可得,
∴,
∴M点的坐标为(4,0);
∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,
∵E是AC的中点,∠AOC=90°,,
∴,
∴此时M的坐标为(0,10);
如图3-4所示,当时,
∴此时M点与A点重合,
∴M点的坐标为(12,0);
如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
∵OE=AE,EF⊥OA,
∴,
∴,
设,则,
∵,
∴,
解得,
∴M点的坐标为(,0);
综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【点睛】
本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
2、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3).
【分析】
(1)只需要利用SAS证明△BCF≌△ACG即可得到答案;
(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FM⊥BC于M,求出,即可推出,则,即:;
法二:过F作,.先证明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则;
(3)如图3-1所示,连接,GM,AG,先证明△ADE是等边三角形,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动.过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQ⊥AB于Q,连接DG,求出DM和QG的长即可求解.
【详解】
(1)∵△ABC和△GEF都是等边三角形,
∴BC=AC,CF=CG,∠ACB=∠FCG=60°,
∴∠ACB+∠ACF=∠FCG+∠ACF,
∴∠FCB=∠GCA,
∴△BCF≌△ACG(SAS),
∴△BFC可以看作是△AGC绕点C逆时针旋转60度所得;
(2)法一:
证明:以为边作,与的延长线交于点K,如图,
∵和均为等边三角形,
∴,∠GFE=60°,
∴,
∴∠EFH+∠ACB=180°,
∴,
∵,
∴.
∵是等边的中线,
∴,
∴,
∴
∴.
在与中,
∴,
∴,
∴,
过点F作FM⊥BC于M,
∴KM=CM,
∵∠K=30°,
∴
∴,
∴,
∴,即:;
法二
证明:过F作,.
∴是等边的中线,
∴,,
∴△FCN≌△FCM(AAS),FC=2FN,
∴CM=CN,,
同法一,.
在与中,
∴
∴,
∴;
(3)如图3-1所示,连接,GM,AG,
∵D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,CD⊥AB,
∴DE∥BC,∠CDA=90°,
∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,
∴△ADE是等边三角形,∠FDE=30°,
∴DE=AE,
∵△GEF是等边三角形,
∴EF=EG,∠GEF=60°,
∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,
∴
∴,即点G在的角平分线所在直线上运动.
过G作,则,
∴最小即是最小,
∴当M、G、P三点共线时,最小
如图3-2所示,过点G作GQ⊥AB于Q,连接DG,
∴QG=PG,
∵∠MAP=60°,∠MPA=90°,
∴∠AMP=30°,
∴AM=2AP,
∵D是AB的中点,AB=12,
∴AD=BD=6,
∵M是BD靠近B点的三等分点,
∴MD=4,
∴AM=10,
∴AP=5,
又∵∠PAG=30°,
∴AG=2GP,
∵,
∴
∴
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解.
3、(1)矩形,见解析;(2)3
【分析】
(1)利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;
(2)先证△ABE是等边三角形,可得AB=AE=EF=3.
【详解】
解:(1)四边形ABFC是矩形,理由如下:
∵四边形ABCD是平行四边形,
∴,
∴∠BAE=∠CFE,∠ABE=∠FCE,
∵E为BC的中点,
∴EB=EC,
在△ABE和△FCE中,
,
∴△ABE≌△FCE(AAS),
∴AB=CF.
∵,
∴四边形ABFC是平行四边形,
∵AD=BC,AD=AF,
∴BC=AF,
∴四边形ABFC是矩形.
(2)∵四边形ABFC是矩形,
∴BC=AF,AE=EF,BE=CE,
∴AE=BE,
∵∠ABC=60°,
∴△ABE是等边三角形,
∴AB=AE=3,
∴EF=3.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.
4、(1)见解析;(2)见解析
【分析】
(1)根据平行四边形的性质可得ABCD且AB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.
(2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明
【详解】
(1)∵四边形ABCD为平行四边形,
∴ABCD且AB=CD.
∵BE=AB,
∴BECD且BE=CD.
∴∠BEF=∠FDC,∠FBE=∠FCD,
∴△BEF≌△CDF.
(2)∵BECD且BE=CD.
∴四边形BECD为平行四边形,
∴DF=DE,CF=BC,
∵四边形ABCD为平行四边形,
∴∠FCD=∠A,
∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A,
∴∠FDC=∠FCD,
∴FD=FC.
又DF=DE,CF=BC,
∴BC=DE,
∴▱BECD是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.
5、(1)见解析;(2)见解析
【分析】
(1)作BD的垂直平分线,再截取即可;
(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.
【详解】
(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.
(2)证明:如图所示:
∵,,
∴,
在与ΔADO中,
,
∴;
∴,
又∵,
∴四边形是菱形.
【点睛】
本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共33页。试卷主要包含了如图,M等内容,欢迎下载使用。
这是一份数学八年级下册第十五章 四边形综合与测试课时作业,共30页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。