年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测评练习题

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测评练习题第1页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测评练习题第2页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测评练习题第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共21页。试卷主要包含了下列∠A,以下分别是回收等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图菱形ABCD,对角线ACBD相交于点O,若BD=8,AC=6,则AB的长是(    A.5 B.6 C.8 D.102、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C. D.3、下图是文易同学答的试卷,文易同学应得(    A.40分 B.60分 C.80分 D.100分4、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )A. B. C. D.5、如图,已知正方形ABCD的边长为6,点EF分别在边ABBC上,BECF=2,CEDF交于点H,点GDE的中点,连接GH,则GH的长为(  )A. B. C.4.5 D.4.36、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是(    A.2.5 B.2 C. D.7、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是(    A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:28、如图,将矩形纸片ABCD沿BD折叠,得到△BCDCDAB交于点E,若∠1=40°,则∠2的度数为(  )A.25° B.20° C.15° D.10°9、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.10、四边形的内角和与外角和的数量关系,正确的是(  )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.2、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_____度.3、判断:(1)菱形的对角线互相垂直且相等(________)(2)菱形的对角线把菱形分成四个全等的直角三角形(________)4、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DAF,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.5、一个多边形,每个外角都是,则这个多边形是________边形.三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F,连接BFAC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB=3,∠ABC=60°,求EF的长.2、如图,ABCD的对角线ACBD相交于点OBD12cm ,AC6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O 以2cm /s 的速度向点D运动. (1)若点EF同时运动,设运动时间为t秒,当t 为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时,AECF是菱形;(3)求(2)中菱形AECF的面积.3、如图,在中,AE平分于点E,点FBC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,,求线段EF的长.4、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接ACBE(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.5、(1)先化简,再求值:(a+b)(ab)﹣aa﹣2b),其中a=1,b=2;(2)如图,菱形ABCD中,ABACEF分别是BCAD的中点,连接AECF.证明:四边形AECF是矩形. -参考答案-一、单选题1、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBORtAOB中,由勾股定理得:故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.2、D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.是轴对称图形,不是中心对称图形,故此选项符合题意;D.是轴对称图形,也是中心对称图形,故此选项不合题意.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键4、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.5、A【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GHDE,利用勾股定理求出DE的长即可得出答案.【详解】解:∵四边形ABCD为正方形,∴∠B=∠DCF=90°,BCDC在△CBE和△DCF中,∴△CBE≌△DCFSAS),∴∠BCE=∠CDF∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵点GDE的中点,GHDEADAB=6,AEABBE=6﹣2=4,GH故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.6、D【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】解:四边形OABC是矩形,中,由勾股定理可知:弧长为,故在数轴上表示的数为故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.7、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.8、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CDAB
    ∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.9、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.10、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.二、填空题1、720°720度【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.2、720【分析】根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案.【详解】解:由题意,得两个四边形有一条公共边,得多边形是由多边形内角和定理,得故答案为:720.【点睛】本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边.3、×        【分析】根据菱形的性质,即可求解.【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形.故答案为:(1)×;(2)√【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.4、【分析】,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.5、六6【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是60°,
    n=360°÷60°=6,
    故答案为:六.【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键.三、解答题1、(1)矩形,见解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证△ABE是等边三角形,可得ABAEEF=3.【详解】解:(1)四边形ABFC是矩形,理由如下:∵四边形ABCD是平行四边形,∴∠BAE=∠CFE,∠ABE=∠FCEEBC的中点,EBEC在△ABE和△FCE中,∴△ABE≌△FCEAAS),ABCF∴四边形ABFC是平行四边形,ADBCADAFBCAF∴四边形ABFC是矩形.(2)∵四边形ABFC是矩形,BCAFAEEFBECEAEBE∵∠ABC=60°,∴△ABE是等边三角形,ABAE=3,EF=3.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.2、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;
    (2)若是菱形,则AC垂直于BD,即有,故AB可求;
    (3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,AOOCEOOFBOOD=6cm∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则∴当AB时,平行四边形是菱形;(3)由(1)(2)可知当t=2sAB=时,四边形AECF是菱形,EO=6−t=4,EF=8,∴菱形AECF的面积=【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.3、(1)见解析;(2)2【分析】(1)利用ASA定理证明△AEB≌△AED,得到BE=EDAD=AB,根据三角形中位线定理解答;(2)分别延长BEAC交于点H,仿照(1)的过程解答.【详解】解:(1)证明:∵AE平分∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AED中,∴△AEB≌△AEDASABE=EDAD=AB∵点FBC的中点,BF=FCEF是△BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BEAC交于点HAE平分∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AEH中,∴△AEB≌△AEH(ASA)BE=EHAH=AB=9,∵点FBC的中点,BF=FCEF是△BCD的中位线,EF=CH=(AH-AC)=2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到AB=CD,然后根据CE=DC,得到AB=EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FCAE=BC,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形, AB=CDCE=DCAB=EC∴四边形ABEC是平行四边形; (2)∵由(1)知,四边形ABEC是平行四边形, FA=FEFB=FC∵四边形ABCD是平行四边形, ∴∠ABC=∠D又∵∠AFC=2∠ADC∴∠AFC=2∠ABC∵∠AFC=∠ABC+∠BAF∴∠ABC=∠BAFFA=FBFA=FE=FB=FCAE=BC∴四边形ABEC是矩形.【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.5、(1),0;(2)证明见解析.【分析】(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;(2)首先根据菱形的性质得到,然后根据EF分别是BCAD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形.【详解】(1)(a+b)(ab)﹣aa﹣2ba=1,b=2代入得:原式=(2)如图所示,∵四边形ABCD是菱形,,且又∵EF分别是BCAD的中点,∴四边形AECF是平行四边形,ABACEBC的中点,,即∴平行四边形AECF是矩形.【点睛】此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共34页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评,共28页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共23页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map