初中第十四章 一次函数综合与测试当堂检测题
展开
这是一份初中第十四章 一次函数综合与测试当堂检测题,共29页。试卷主要包含了在下列说法中,能确定位置的是,如图,过点A,点P在第二象限内,P点到x等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
3、平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在( )
A.第一象限 B.第二象限 C.直线y=x上 D.坐标轴上
4、在下列说法中,能确定位置的是( )
A.禅城区季华五路 B.中山公园与火车站之间
C.距离祖庙300米 D.金马影剧院大厅5排21号
5、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
6、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
7、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )
A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x
8、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )
A.2 B.-1 C.-2 D.4
9、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )
A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
10、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、函数的定义域是 _____.
2、如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______.
3、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
4、直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是______.
5、某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
2、已知直线l1:y=-x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1.
(1)求直线l1的解析式;
(2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时点P的坐标;
(3)E点的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.
3、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
4、【直观想象】
如图1,动点P在数轴上从负半轴向正半轴运动,点P到原点的距离先变小再变大,当点P的位置确定时,点P到原点的距离也唯一确定;
【数学发现】
当一个动点到一个定点的距离为d,我们发现d是x的函数;
【数学理解】
动点到定点的距离为d,当 时,d取最小值;
【类比迁移】
设动点到两个定点、的距离和为y.
①尝试写出y关于x的函数关系式及相对应的x的取值范围;
②在给出的平面直角坐标系中画出y关于x的函数图像;
③当y>9时,x的取值范围是 .
5、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关.当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.
(1)请你用表格表示气温与音速之间的关系.
(2)表格反映了哪两个变量之间的关系?哪个是自变量?
(3)当气温是35℃时,估计音速y可能是多少?
(4)能否用一个式子来表示两个变量之间的关系?
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
3、B
【解析】
【分析】
对取不同值进行验证分析即可.
【详解】
解:A、当,点P在第一象限,故A不符合题意.
B、由于横坐标为,点P一定不在第二象限,故B符合题意.
C、当,点P在直线y=x上,故C不符合题意.
D、当时,点P在x轴上,故D不符合题意.
故选:B.
【点睛】
本题主要是考查了横纵坐标的取值与其在直角坐标系中的位置关系,熟练根据横纵坐标的不同取值,判断坐标点所在的位置,是解决该题的关键.
4、D
【解析】
【分析】
根据确定位置的方法逐一判处即可.
【详解】
解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
C、距离祖庙300米,有距离但没有方向,故不符合题意;
D、金马影剧院大厅5排21号,确定了位置,故符合题意.
故选:D
【点睛】
本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
5、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
6、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
7、D
【解析】
【分析】
先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.
【详解】
解:由图可知:A(0,3),xB=1.
∵点B在直线y=2x上,
∴yB=2×1=2,
∴点B的坐标为(1,2),
设直线AB的解析式为y=kx+b,
则有:,
解得:,
∴直线AB的解析式为y=-x+3;
故选:D.
【点睛】
本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.
8、C
【解析】
【分析】
首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.
【详解】
解:由题意得:x=1时,y=k+3,
∵在x=1处,自变量增加2,函数值相应减少4,
∴x=3时,函数值是k+3-4,
∴3k+3=k+3-4,
解得:k=-2,
故选C.
【点睛】
此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.
9、C
【解析】
【分析】
点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
【详解】
∵P点到x、y轴的距离分别是4、3,
∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
∵点P在第二象限内,
∴点P的坐标为(-3,4),
故选:C.
【点睛】
本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
10、C
【解析】
【分析】
由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
【详解】
解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=kx-k的图象经过一、二、四象限;
故选:C.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
二、填空题
1、x≠0
【解析】
【分析】
由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.
【详解】
解:函数的定义域是:x≠0.
故答案为:x≠0.
【点睛】
本题考查求函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
2、(-3,4)
【解析】
【分析】
先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可.
【详解】
解:∵A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,
∴A(0,4),D(-1,0),C(0,-2),
∴AC=6;
联立 ,
解得,
∴点B的坐标为(-2,2),
∴,
∵,
∴可设直线AE的解析式为,
∴,
∴直线AE的解析式为,
∵E是直线AE与x轴的交点,
∴点E坐标为(2,0),
∴DE=3,
∴,
∴,
∴,
∴点P的坐标为(-3,4),
故答案为:(-3,4).
【点睛】
本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.
3、或
【解析】
【分析】
根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
【详解】
解:∵点,,且ABx轴,
∴y=2,
∵点到轴的距离是到轴距离的2倍,
∴,
∴,
∴B(-4,2)或(4,2).
故答案为(-4,2)或(4,2).
【点睛】
本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
4、y=-x-2
【解析】
【分析】
根据平移的性质“左加右减,上加下减”,即可求出平移后的直线解析式.
【详解】
解:直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是y=-x+3-5=y=-x-2.
故答案为:y=-x-2.
【点睛】
本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键.
5、x>300
【解析】
【分析】
根据题意首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围.
【详解】
解:由题设可得不等式kx+30<x.
∵y1=kx+30经过点(500,80),
∴k=,
∴y1=x+30,y2=x,解得:x=300,y=60.
∴两直线的交点坐标为(300,60),
∴当x>300时不等式kx+30<x中x成立,
故答案为:x>300.
【点睛】
本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
三、解答题
1、(1);(2)5;(3)点P的坐标为(,-445)或(-,845)
【解析】
【分析】
(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
【详解】
解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
∴AO=CB=4,OB=AC=8,
∴A点坐标为(0,4),B点坐标为(8,0).
设对角线AB所在直线的函数关系式为y=kx+b,
则有4=b0=8k+b,解得:,
∴对角线AB所在直线的函数关系式为y=-x+4.
(2)∵∠AOB=90°,
∴勾股定理得:AB=AO2+OB2=45,
∵MN垂直平分AB,
∴BN=AN=AB=25.
∵MN为线段AB的垂直平分线,
∴AM=BM
设AM=a,则BM=a,OM=8-a,
由勾股定理得,a2=42+(8-a)2,
解得a=5,即AM=5.
(3)(方法一)∵OM=3,
∴点M坐标为(3,0).
又∵点A坐标为(0,4),
∴直线AM的解析式为y=-x+4.
∵点P在直线AB:y=-x+4上,
∴设P点坐标为(m,-m+4),
点P到直线AM:x+y-4=0的距离h=43m-12m+4-4432+12=m2.
△PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
解得m=± ,
故点P的坐标为(,-445)或(-,845).
(方法二)∵S长方形OACB=8×4=32,
∴S△PAM=32.
设点P的坐标为(x,-x+4).
当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
解得:x=,
∴点P的坐标为(,-445);
当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
解得:x=-,
∴点P的坐标为(-,845).
综上所述,点P的坐标为(,-445)或(-,845).
【点睛】
本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
2、(1);(2)点的坐标;(3)点的坐标为或,或.
【解析】
【分析】
(1)当时,,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;
(2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;
(3)①当点在直线上方,画出图形,证明,利用,,即可求解.②当点在直线下方时,同①的方法即可得出结论.③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论.
【详解】
解:(1)当时,,即点的坐标为,
将点的坐标代入直线得:,解得:,
故:直线的解析式为:;
(2)确定点关于过点垂线的对称点、点关于轴的对称点,
连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:
将点、点的坐标代入一次函数表达式:得:,解得:,
则直线的表达式为:,
当时,,即点的坐标为,
的值,
即:当的值最小为时,此时点的坐标;
(3)将、点坐标代入一次函数表达式,同理可得其表达式为
①当点在直线上方时,设点,点,点,
过点、分别作轴的平行线交过点与轴的平行线分别交于点、,
,,
,
,,
,
,,
即,解得.
故点的坐标为,
②当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,
同①的方法得,,
③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得
即:点的坐标为,或,.
【点睛】
本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点.
3、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据SAS即可证明△AOB≅△COD;
(2)过点作CH∥x轴,交BD于点H,得出AB∥CH∥OD,由平行线的性质得∠BAP=∠HCP,由轴得∠DCH=∠ODC=90°,由△AOB≅△COD得OB=OD,故可得∠ODB=45°,从而得出∠CHD=∠CDH=45°,推出CH=CD=AB,根据AAS证明△ABP≅△CHP,得出AP=CP即可得证;
(3)延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,根据SAS证明△AGM≅△FGE,得出AM=EF,∠AMG=∠GEF,故AM∥EJ,由平行线的性质得出∠MAO=∠AJE,进而推出∠MAO=∠ECO,根据SAS证明△MAO≅△ECO,故OM=OE,∠AOM=∠EOC,即可证明∠OEG=45°.
【详解】
(1)∵AB⊥y轴于点,轴于点,
∴∠ABO=∠CDO=90°,
∵A(-2,6),C(6,2),
∴AB=CD=2,OB=OD=6,
∴△AOB≅△COD(SAS);
(2)
如图2,过点作CH∥x轴,交BD于点H,
∴AB∥CH∥OD,
∴∠BAP=∠HCP,
∵CD⊥x轴,
∴∠DCH=∠ODC=90°,
∵△AOB≅△COD,
∴OB=OD,
∴∠ODB=45°,∠CHD=∠ODB=45°,∠CDH=90°-45°=45°,
∴CH=CD=AB,
在△ABP与△CHP中,
∠APB=∠CPH∠BAP=∠HCPAB=CH,
∴△ABP≅△CHP(AAS),
∴AP=CP,即点为AC中点;
(3)
如图3,延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,
∵AG=GF,∠AGE=∠FGE,GM=GE,
∴△AGM≅△FGE(SAS),
∴AM=EF,∠AMG=∠GEF,
∴AM∥EJ,
∴∠MAO=∠AJE,
∵EF=EC,
∴AM=EC,
∵∠AOC=∠CEJ=90°,
∴∠AJE+∠EJO=180°,∠EJO+ECO=180°,
∴∠AJE=∠ECO,
∴∠MAO=∠ECO,
∵AO=CO,
∴△MAO≅△ECO(SAS),
OM=OE,∠AOM=∠EOC,
∴∠MOE=∠AOC=90°,
∴∠MEO=45°,即∠OEG=45°.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
4、(数学理解)5;(类比迁移)①y=5-2x(x4);②见解析;③x>7或x9或5-2x>9
解得x>7或x7或x
相关试卷
这是一份初中北京课改版第十四章 一次函数综合与测试课时作业,共19页。试卷主要包含了已知点P,点P的坐标为,已知一次函数与一次函数中,函数,函数的图象如下图所示,,两地相距80km,甲,若点在第三象限,则点在.等内容,欢迎下载使用。
这是一份数学第十四章 一次函数综合与测试课后练习题,共24页。试卷主要包含了在平面直角坐标系中,点P,下面哪个点不在函数的图像上.等内容,欢迎下载使用。
这是一份初中北京课改版第十四章 一次函数综合与测试一课一练,共22页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。