终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练京改版八年级数学下册第十四章一次函数专题练习练习题(无超纲)

    立即下载
    加入资料篮
    2022年强化训练京改版八年级数学下册第十四章一次函数专题练习练习题(无超纲)第1页
    2022年强化训练京改版八年级数学下册第十四章一次函数专题练习练习题(无超纲)第2页
    2022年强化训练京改版八年级数学下册第十四章一次函数专题练习练习题(无超纲)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学北京课改版第十四章 一次函数综合与测试精练

    展开

    这是一份数学北京课改版第十四章 一次函数综合与测试精练,共28页。试卷主要包含了若直线y=kx+b经过第一,,两地相距80km,甲等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、函数y=的自变量x的取值范围是( )
    A.x≠0B.x≠1C.x≠±1D.全体实数
    2、如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点An的纵坐标为( )
    A.()nB.()n+1C.()n﹣1+D.
    3、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )
    A.2B.-1C.-2D.4
    4、若直线y=kx+b经过第一、二、三象限,则函数y=bx﹣k的大致图象是( )
    A.B.C.D.
    5、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
    A. B.
    C. D.
    6、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
    A.(-2,3)或(-2,-3)B.(-2,3)
    C.(-3,2)或(-3,-2)D.(-3,2)
    7、下面关于函数的三种表示方法叙述错误的是( )
    A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
    B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
    C.用解析式法表示函数关系,可以方便地计算函数值
    D.任何函数关系都可以用上述三种方法来表示
    8、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
    A.乙比甲提前出发1hB.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80kmD.0.75h或1.125h时,乙比甲多行驶10km
    9、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )
    A.100 m/min,266m/minB.62.5m/min,500m/min
    C.62.5m/min,437.5m/minD.100m/min,500m/min
    10、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点在轴上,则________;点的坐标为________.
    2、(1)每一个含有未知数x和y的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
    (2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.
    3、直线y=x-2与y轴交点坐标是_____.
    4、请写出符合以下两个条件的一个函数解析式______.①过点(-2,1),②在第二象限内,y随x增大而增大.
    5、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
    (1)求对角线AB所在直线的函数关系式;
    (2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
    (3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
    2、如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足,C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P.
    (1)如图1,写出a、b的值,证明△AOP≌△BOC;
    (2)如图2,连接OH,求证:∠OHP=45°;
    (3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,求证:S△BDM﹣S△ADN=4.
    3、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商场准备一次购进这两种家电共台,设购进电冰箱台,这台家电的销售总利润元,要求购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润.
    (3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案.
    4、某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.
    方案一:买一件夹克送一件衬衣
    方案二:夹克和衬衣均按定价的80%付款
    现有顾客要到该商场购买夹克30件,衬衣x件(x>30)
    (1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;
    (2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?
    (3)当x=40时,哪种方案更省钱?请说明理由.
    5、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m= ,n= ;
    (2)当x为何值时,甲追上了乙?
    (3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围.
    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由题意直接依据分母不等于0进行分析计算即可.
    【详解】
    解:由题意可得,
    所以自变量x的取值范围是全体实数.
    故选:D.
    【点睛】
    本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.
    2、A
    【解析】
    【分析】
    联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,),依次求出:点A2的纵坐标为、A3的纵坐标为,即可求解.
    【详解】
    解:联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,);
    则点B1(,0),则直线B1A2的表达式为:y=x+b,
    将点B1坐标代入上式并解得:直线B1A2的表达式为:y3=x﹣,
    将表达式y3与直线l1的表达式联立并解得:x=,y=,即点A2的纵坐标为;
    同理可得A3的纵坐标为,
    …按此规律,则点An的纵坐标为()n,
    故选:A.
    【点睛】
    本题为探究规律类题目,求此类和一次函数的交点有关的规律题,需要将前几个交点一次求出来,然后找到点的横坐标,纵坐标之间的关系,可能出现周期的规律,或者后面的数时前面数的倍数或差相同等的规律.
    3、C
    【解析】
    【分析】
    首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.
    【详解】
    解:由题意得:x=1时,y=k+3,
    ∵在x=1处,自变量增加2,函数值相应减少4,
    ∴x=3时,函数值是k+3-4,
    ∴3k+3=k+3-4,
    解得:k=-2,
    故选C.
    【点睛】
    此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.
    4、D
    【解析】
    【分析】
    直线y=kx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.
    【详解】
    解:直线y=kx+b经过第一、二、三象限,则,
    时,函数y=bx﹣k的图象经过第一、三、四象限,
    故选:D.
    【点睛】
    本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键.
    5、C
    【解析】
    【分析】
    分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
    【详解】
    解:当两车相遇时,所用时间为120÷(60+90)=小时,
    B车到达甲地时间为120÷90=小时,
    A车到达乙地时间为120÷60=2小时,
    ∴当0≤x≤时,y=120-60x-90x=-150x+120;
    当<x≤时,y=60(x-)+90(x-)=150x-120;
    当<x≤2是,y=60x;
    由函数解析式的当x=时,y=150×-120=80.
    故选:C
    【点睛】
    本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
    6、A
    【解析】
    【分析】
    根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
    【详解】
    解:∵点P在y轴左侧,
    ∴点P在第二象限或第三象限,
    ∵点P到x轴的距离是3,到y轴距离是2,
    ∴点P的坐标是(-2,3)或(-2,-3),
    故选:A.
    【点睛】
    此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
    7、D
    【解析】
    【分析】
    根据函数三种表示方法的特点即可作出判断.
    【详解】
    前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
    故选:D
    【点睛】
    本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
    8、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    9、D
    【解析】
    【分析】
    根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.
    【详解】
    解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;
    公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.
    故选:D.
    【点睛】
    本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
    10、A
    【解析】
    【分析】
    设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.
    【详解】
    解:设直线的解析式为 ,
    把点,点代入,得:
    ,解得:,
    ∴直线的解析式为,
    ∵将直线向下平移8个单位得到直线,
    ∴直线的解析式为 ,
    ∵点关于轴对称的点为 ,
    设直线的解析式为 ,
    把点 ,点代入,得:
    ,解得:,
    ∴直线的解析式为,
    将直线与直线的解析式联立,得:
    ,解得: ,
    ∴直线与直线的交点坐标为.
    故选:A
    【点睛】
    本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据轴上的点,纵坐标为0,求出m值即可.
    【详解】
    解:∵点在轴上,
    ∴,
    解得,,
    则;
    点的坐标为(-2,0);
    故答案为:-3,(-2,0).
    【点睛】
    本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.
    2、 y=kx+b(k,b是常数,k≠0) 直线 自变量 多少 交点坐标
    【解析】
    【分析】
    (1)根据一次函数与二元一次方程的关系解答即可;
    (2)根据一次函数与二元一次方程组的关系解答即可;
    【详解】
    (1)一般地,任何一个二元一次方程都可转化为一次函数的形式,
    ∴每个二元一次方程都对应一个一次函数,也对应一条直线,
    故答案为:y=kx+b(k,b是常数,k≠0);直线
    (2)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
    ∴答案为:自变量;多少;交点坐标
    【点睛】
    此题考查一次函数与二元一次方程问题,关键是根据一次函数与二元一次方程(组)的关系解答.
    3、 (0,-2)
    【解析】
    【分析】
    当x=0时,求y的值,从而确定直线与y轴的交点.
    【详解】
    解:∵当x=0时,y=-2,
    ∴直线y=x-2与y轴交点坐标是(0.-2).
    故答案为:(0,-2).
    【点睛】
    本题考查一次函数与坐标轴的交点坐标,利用数形结合思想解题是关键.
    4、(答案不唯一)
    【解析】
    【分析】
    根据一次函数的性质,即可求解.
    【详解】
    解:根据题意得:符合条件的函数是一次函数,且自变量的系数小于0,过点(-2,1)
    如 等.
    故答案为: (答案不唯一)
    【点睛】
    本题主要考查了书写一次函数的解析式,熟练掌握一次函数的性质是解题的关键.
    5、二
    【解析】
    【分析】
    根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.
    【详解】
    解:∵直线y=ax﹣1与直线y=2x+1平行,
    ∴ a=2,
    ∴直线y=ax﹣1的解析式为y=2x﹣1
    ∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;
    故答案为:二.
    【点睛】
    本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.
    三、解答题
    1、(1);(2)5;(3)点P的坐标为(,-445)或(-,845)
    【解析】
    【分析】
    (1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
    (2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
    (3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
    (方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
    【详解】
    解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
    ∴AO=CB=4,OB=AC=8,
    ∴A点坐标为(0,4),B点坐标为(8,0).
    设对角线AB所在直线的函数关系式为y=kx+b,
    则有4=b0=8k+b,解得:,
    ∴对角线AB所在直线的函数关系式为y=-x+4.
    (2)∵∠AOB=90°,
    ∴勾股定理得:AB=AO2+OB2=45,
    ∵MN垂直平分AB,
    ∴BN=AN=AB=25.
    ∵MN为线段AB的垂直平分线,
    ∴AM=BM
    设AM=a,则BM=a,OM=8-a,
    由勾股定理得,a2=42+(8-a)2,
    解得a=5,即AM=5.
    (3)(方法一)∵OM=3,
    ∴点M坐标为(3,0).
    又∵点A坐标为(0,4),
    ∴直线AM的解析式为y=-x+4.
    ∵点P在直线AB:y=-x+4上,
    ∴设P点坐标为(m,-m+4),
    点P到直线AM:x+y-4=0的距离h=43m-12m+4-4432+12=m2.
    △PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
    解得m=± ,
    故点P的坐标为(,-445)或(-,845).
    (方法二)∵S长方形OACB=8×4=32,
    ∴S△PAM=32.
    设点P的坐标为(x,-x+4).
    当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
    解得:x=,
    ∴点P的坐标为(,-445);
    当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
    解得:x=-,
    ∴点P的坐标为(-,845).
    综上所述,点P的坐标为(,-445)或(-,845).
    【点睛】
    本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
    2、(1)a=4,b=﹣4,见解析;(2)见解析;(3)见解析
    【解析】
    【分析】
    (1)先依据非负数的性质求得、的值从而可得到,然后再,,最后,依据可证明;
    (2)要证,只需证明平分,过分别作于点,作于点,只需证到,只需证明即可;
    (3)连接,易证,从而有,由此可得.
    【详解】
    (1)解:,
    ,,
    ,,
    则.
    即,,


    在与中,


    (2)证明:过分别作于点,作于点.
    在四边形中,,



    在与中,



    ,,
    平分,

    (3)证明:如图:连接.
    ,,为的中点,
    ,,,
    ,,

    即,

    在与中,




    【点睛】
    本题是一次函数综合题,考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(3)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键.
    3、(1)每台空调的进价为元,则每台电冰箱的进价为元;(2)当购进电冰箱台,空调台获利最大,最大利润为元;(3)当时,购进电冰箱台,空调台销售总利润最大;当时,,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大
    【解析】
    【分析】
    设每台空调的进价为元,则每台电冰箱的进价为元,根据商城用元购进电冰箱的数量与用元购进空调的数量相等”,列出方程,即可解答;
    设购进电冰箱台,这台家电的销售总利润为元,则,由题意:购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,列出不等式组,解得,再由为正整数,的,,,,,,,即合理的方案共有种,然后由一次函数的性质,确定获利最大的方案以及最大利润;
    当电冰箱出厂价下调元时,则利润,分三种情况讨论:当;当时;当;利用一次函数的性质,即可解答.
    【详解】
    解:设每台空调的进价为元,则每台电冰箱的进价为元,
    根据题意得:,
    解得:,
    经检验,是原方程的解,且符合题意,

    答:每台空调的进价为元,则每台电冰箱的进价为元.
    设购进电冰箱台,这台家电的销售总利润为元,
    则,
    根据题意得:,
    解得:,
    为正整数,
    ,,,,,,,
    合理的方案共有种,
    即电冰箱台,空调台;
    电冰箱台,空调台;
    电冰箱台,空调台;
    电冰箱台,空调台;
    电冰箱台,空调台;
    电冰箱台,空调台;
    电冰箱台,空调台;
    ,,
    随的增大而减小,
    当时,有最大值,最大值为:元,
    答:当购进电冰箱台,空调台获利最大,最大利润为元.
    当厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,
    则利润,
    当,即时,随的增大而增大,

    当时,这台家电销售总利润最大,即购进电冰箱台,空调台;
    当时,,各种方案利润相同;
    当,即时,随的增大而减小,
    ,,
    当时,这台家电销售总利润最大,即购进电冰箱台,空调台;
    答:当时,购进电冰箱台,空调台销售总利润最大;
    当时,,各种方案利润相同;
    当时,购进电冰箱台,空调台销售总利润最大.
    【点睛】
    本题考查了列分式方程的应用、一元一次不等式组的应用以及一次函数的应用,找准数量关系,正确列出分式方程和一元一次不等式组是解题的关键.
    4、(1);(2)当时;(3)当x=40时,方案一更省钱.理由见解析.
    【解析】
    【分析】
    (1)由题意分别根据方案一和方案二的条件列出代数式即可;
    (2)根据题意可得,即,进而进行求解即可得出结论;
    (3)根据题意把x=40分别代入y1和y2,进而分析即可得出结论.
    【详解】
    解:(1)由题意可得:
    方案一购买共需付款(元),
    方案二购买共需付款(元);
    (2)由题意可得,即,
    解得:,
    所以购买衬衣90件时,两种方案付款一样多;
    (3)当x=40时,(元),
    (元),
    因为,
    所以当x=40时,方案一更省钱.
    【点睛】
    本题考查一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出关系式;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).
    5、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.
    【解析】
    【分析】
    (1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程÷速度可求提速后所用时间,即可得到m值,进而得出n的值;
    (2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x的值;
    (3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可.
    【详解】
    解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;
    当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是(m/s);
    ∵甲出发一段时间后速度提高为原来的3倍,
    ∴甲提速后速度为6m/s,
    故提速后甲行走所用时间为:(s),
    ∴m=30+60=90(s)
    ∴n=400÷(s);
    故答案为10;2;90;100;
    (2)设OA段对应的函数关系式为y=kx,
    ∵A(90,360)在OA上,
    ∴90k=360,解得k=4,
    ∴y=4x.
    设BC段对应的函数关系式为y=k1x+b,
    ∵B(30,40)、C(90,400)在BC上,
    ∴,
    解得,
    ∴y=6x-140,
    由乙追上了甲,得4x=6x-140,
    解得x=70.
    答:当x为70秒时,甲追上了乙.
    (3)由题意可得,

    解得x=55或x=85,
    即55≤x≤85时,甲、乙之间的距离不超过30米;
    当4x=400﹣30时,
    解得x=92.5,
    即92.5≤x≤100时,甲、乙之间的距离不超过30米;
    由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.
    【点睛】
    本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题.

    相关试卷

    北京课改版八年级下册第十四章 一次函数综合与测试课时作业:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共24页。试卷主要包含了点P的坐标为,已知点等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试课时练习:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时练习,共29页。试卷主要包含了点在第四象限,则点在第几象限,已知点A,已知一次函数y=ax+b等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步练习题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步练习题,共22页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map