北京课改版第十四章 一次函数综合与测试综合训练题
展开
这是一份北京课改版第十四章 一次函数综合与测试综合训练题,共27页。试卷主要包含了如图,过点A,一次函数y=,已知点等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )
A. B. C. D.
2、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是( )
A. B.
C. D.
3、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:
①越野登山比赛的全程为1000米;
②甲比乙晚出发40分钟;
③甲在途中休息了10分钟;
④乙追上甲时,乙跑了750米.其中正确的说法有( )个
A.1 B.2 C.3 D.4
4、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )
A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x
5、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )
A. B. C.3 D.
6、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间/分钟
0
5
10
15
20
25
温度/℃
10
25
40
55
70
85
若温度的变化是均匀的,则18分钟时的温度是( )
A.62℃ B.64℃ C.66℃ D.68℃
7、如图,直线l是一次函数的图象,下列说法中,错误的是( )
A.,
B.若点(-1,)和点(2,)是直线l上的点,则
C.若点(2,0)在直线l上,则关于x的方程的解为
D.将直线l向下平移b个单位长度后,所得直线的解析式为
8、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
9、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
10、下面哪个点不在函数的图像上( ).
A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是_________
2、如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______.
3、在中,的取值范围为______.
4、图象经过点A(-2,6)的正比例函数y=kx,则k为 _________ .
5、在平面直角坐标系中有两点,,如果点在轴上方,由点,,组成的三角形与全等时,此时点的坐标为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.
(1)求这两个函数的表达式;
(2)求两直线与y轴围成的三角形的面积.
2、在平面直角坐标系中,A(a,0),B(b,0),C(c,0),a≠0且a,b,c满足条件.
(1)直接写出△ABC的形状 ;
(2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°
① 如图1,当点E与点C重合时,求AD的长;
② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;
3、已知函数y=(2-m)x+2n-3.求当m为何值时.
(1)此函数为一次函数?
(2)此函数为正比例函数?
4、学生准备组织八年级学生进行数学应用创作大赛,需购买甲、乙两种奖品.如果购买甲奖品2个和乙奖品5个,需花费66元:购买甲奖品3个和乙奖品2个,需花费44元;
(1)求甲、乙两种奖品的单价各是多少元?
(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价8折销售,乙奖品购买8个以内按原价出售,购买8个以上超出的部分按原价的5折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;
(3)在(2)的条件下,问买哪一种产品更省钱?
5、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OA=OB=m,OC=n,满足m2﹣12m+36+(n﹣2)2=0,作BD⊥AC于D,BD交OA于E.
(1)如图1,求点B、C的坐标;
(2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,△PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;
(3)如图3,在(2)的条件下,当t=6时,在坐标平面内是否存在点F,使△PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
【详解】
解:过点P作PM⊥OD于点M,
∵长方形的顶点的坐标分别为,点是的中点,
∴点D(5,0)
∵,PM⊥OD,
∴OM=DM
即点M(2.5,0)
∴点P(2.5,4),
故选:A
【点睛】
此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
2、D
【解析】
【分析】
若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
【详解】
解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
故选D.
【点睛】
本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
3、C
【解析】
【分析】
根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.
【详解】
解:由图像可知,从起点到终点的距离为1000米,故①正确;
根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;
在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;
∵乙从起点到终点的时间为10分钟,
∴乙的速度为1000÷10=100米/分钟,
设乙需要t分钟追上甲,
,
解得t=7.5,
∴乙追上甲时,乙跑了7.5×100=750米,故④正确;
故选C.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
4、D
【解析】
【分析】
先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.
【详解】
解:由图可知:A(0,3),xB=1.
∵点B在直线y=2x上,
∴yB=2×1=2,
∴点B的坐标为(1,2),
设直线AB的解析式为y=kx+b,
则有:,
解得:,
∴直线AB的解析式为y=-x+3;
故选:D.
【点睛】
本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.
5、D
【解析】
【分析】
由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.
【详解】
解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),
∴m2-3=6,即m2=9,
解得:m=-3或m=3.
又∵y的值随着x的值的增大而减小,
∴m-2<0,
∴m<2,
∴m=-3.
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.
6、B
【解析】
【分析】
根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
【详解】
解:根据图表可得:温度与时间的关系符合一次函数关系式,
设温度T与时间x的函数关系式为:,将,,代入解析式可得:
,
解得:,
∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
当时,
,
故选:B.
【点睛】
题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
7、B
【解析】
【分析】
根据一次函数图象的性质和平移的规律逐项分析即可.
【详解】
解:A.由图象可知,,,故正确,不符合题意;
B. ∵-1-3
【解析】
【分析】
根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.
【详解】
解:由题意得:2x+6>0,
解得:x>-3,
故答案为:x>-3.
【点睛】
本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.
4、-3
【解析】
【分析】
把点A(-2,6)代入正比例函数的关系式为y=kx,即可求出答案.
【详解】
解:将点A(-2,6)代入正比例函数的关系式为y=kx
则有6=-2k
解得:k=-3,
故答案为:-3.
【点睛】
本题考查了正比例函数的解析式的问题,做题的关键是直接将点的坐标代入解析式,计算即可.
5、 (4,2)或(-4,2) ##(-4,2)或(4,2)
【解析】
【分析】
根据点的坐标确定OA、OB的长,然后利用全等可分析点的位置,最后分情况解答即可.
【详解】
解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),
∴OA=4,OB=2,∠AOB=90°
∵△CBO≌△AOB
∴CB= OA =4,OB=OB=2,
∵点在轴上方
∴当点C在第一象限时,C点坐标为(4,2)
当点C在第二象限时,C点坐标为(-4,2)
∴C的坐标可以为(4,2)或(-4,2).
故填(4,2)或(-4,2).
【点睛】
本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.
三、解答题
1、(1)y=34x,y=2x-5;(2)SΔAOB=10
【解析】
【分析】
(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;
(2)由点A的坐标及OB的长度即可求得△AOB的面积.
【详解】
∵A(4,3)
∴OA=OB=32+42=5,
∴B(0,-5),
设直线OA的解析式为y=kx,则4k=3,k=,
∴直线OA的解析式为y=34x,
设直线AB的解析式为y=k'x+b,把A、B两点的坐标分别代入得:4k'+b=3b=-5,
∴k'=2b=-5,
∴直线AB的解析式为y=2x-5.
(2)S△AOB=12×5×4=10.
【点睛】
本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.
2、(1)等腰三角形,证明见解析;(2)①;②
【解析】
【分析】
(1)先证明 再证明 从而可得答案;
(2)① 先证明是等边三角形,可得 再证明
再利用含的直角三角形的性质求解 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFD(AAS), 可得AC=EF,再求解BD=,CF=CD=, 再求解OE=, 从而可得答案.
【详解】
解:(1) ,
解得:
A(,0),B(b,0),C(3,0),
而
是等腰三角形.
(2)① ∠ACB=120°,∠ADE=60°,
是等边三角形,
②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:
∵AC=BC,∠ACB=120°,
∴∠ACO=∠BCO=60°,
∴△CDF是等边三角形,
∴∠CFD=60°,CD=FD,
∴∠EFD=120°,
∵∠ACO=∠ADE=60°,
∴∠CAD=∠CED,
又∵∠ACD=∠EFD=120°,
∴△ACD≌△EFD(AAS),
∴AC=EF, 由(1)得:c=3, ∴OC=3,
∵∠AOC=90°,∠ACO=60°,
∴∠OAC=30°,
∴BC=AC=2OC=6,EF=AC=6,
∵CD=2BD, ∴BD=,CF=CD=,
∴CE=EF+CF=,
∴OE=CE-OC=,
∴
【点睛】
本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键.
3、(1)m≠2;(2)m≠2且n=.
【解析】
【分析】
(1)根据一次函数的定义得,2-m≠0,即可求得m的取值;
(2)满足两个条件:2-m≠0且2n-3=0,即可得到m与n的取值.
【详解】
(1)由题意得,2-m≠0,解得m≠2.
(2)由题意得,2-m≠0且2n-3=0,解得m≠2且n=.
【点睛】
本题考查了一次函数与正比例函数的定义,要注意两种函数既有联系又有区别.
4、(1)甲、乙两种奖品的单价各是8元和10元;(2)y1=6.4x;y2=;(3)当购买28个或以下时,购买甲产品更省钱,当购买29个或以上时,购买乙产品更省钱
【解析】
【分析】
(1)设甲、乙两种奖品的单价各是a元和b元.根据“购买甲奖品2个和乙奖品5个,需花费66元:购买甲奖品3个和乙奖品2个,需花费44元;”列出方程组,即可求解;
(2)根据购买奖品所需的钱等于单价乘以数量,分别列出关系式,即可求解;
(3)根据当 时,解得:;当 时,解得:;当 时,解得: ,从而得到当x=时,y1=y2,当x<时,y1<y2,当x>时,y1>y2,再由x为整数,即可求解.
【详解】
(1)设甲、乙两种奖品的单价各是a元和b元.根据题意得:
,
解得:,
答:甲、乙两种奖品的单价各是8元和10元;
(2)根据题意得: ;
当 时, ,
当 时, ,
综上所述,y2=;
(3)当 时,解得:,
当 时,解得:,
当 时,解得: ,
∴当x=时,y1=y2,当x<时,y1<y2,当x>时,y1>y2
∵x为整数,
∴当购买28个或以下时,购买甲产品更省钱,当购买29个或以上时,购买乙产品更省钱.
【点睛】
本题主要考查了二元一次方程组的应用,列函数关系式及其应用,明确题意,准确得到等量关系是解题的关键.
5、(1)B(-6,0),C(2,0);(2)S=8-2t(0≤t<4),S=2t-8(t>4);(3)存在,F(4,4)或F(2,-2)
【解析】
【分析】
(1)根据平方的非负性,求得,即可求解;
(2)根据△OAC≌△OBE求得,分段讨论,分别求解即可;
(3)分两种情况讨论,当在的上方或在的下方,分别求解即可.
【详解】
解:(1)∵
∴∵,
∴m-6=0,n-2=0
∴m=6,n=2
∴B(-6,0),C(2,0)
(2)∵BD⊥AC,AO⊥BC ∠BDC=∠BDA=90°,∠AOB=∠AOC=90°
∴∠OAC+∠OCA=90°,∠OBE+∠OCA=90°
∴∠OAC=∠OBE
∴△OAC≌△OBE(AAS)
∴OC=OE=2
①当0≤t<4时,BP=2t,PC=8-2t,S=PC×OE=(8-2t)×2=8-2t;
②当t>4时,BP=2t,PC=2t-8,S=PC×OE=(2t-8)×2=2t-8;
(3)当t=6时,BP=12
∴OB=OP=6
①当F在EP上方时,作FM⊥y轴于M,FN⊥x轴于N
∴∠FME=∠FNP=90°
∵∠MFN=∠EFP=90°
∴∠MFE=∠NFP∵FE=FP
∴
∴ME=NP,FM=FN
∴MO=ON
∴2+EM=6-NP
∴ON=4
∴F(4,4)
②当F在EP下方时,作FG⊥y轴于G,FH⊥x轴于H
∴∠FGE=∠FHP=90°
∵∠GFH=∠EFP=90°
∴∠GFE=∠HFP
∵FE=FP
∴
∴FG=FH, GE=HP
∴HF=OG,FG=OH
∴2+OG=6-OH
∴OG=OH=2
∴F(2,-2)
【点睛】
此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题,共23页。试卷主要包含了已知点,已知点P,下列命题为真命题的是,如图,过点A等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共24页。试卷主要包含了点P的坐标为,已知点等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试巩固练习,共25页。