北京课改版八年级下册第十四章 一次函数综合与测试课后测评
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共24页。
京改版八年级数学下册第十四章一次函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )A. B. C. D.2、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )A. B. C. D.4、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°5、一次函数y=kx+b的图象如图所示,则下列说法错误的是( )A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0D.图象向下平移2个单位得y=﹣x的图象6、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )A.y<0 B.y>0 C.y<3 D.y>37、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则18分钟时的温度是( )A.62℃ B.64℃ C.66℃ D.68℃8、在函数y=中,自变量x的取值范围是 ( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠49、平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在( )A.第一象限 B.第二象限 C.直线y=x上 D.坐标轴上10、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将函数的图像向下平移2个单位长度,则平移后的图像对应的函数表达式是______.2、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)3、如图,直线交x轴于点A,交y轴于点B,点A1:坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2;过点A2作x轴的垂线交直线于点B2,以点A为圆心,AB2长为半径画弧交x轴于点A3;……按此做法进行下去,点B2021的坐标为____.4、已知一次函数(、是常数,)的图像与轴交于点,与轴交于点.若,则的取值范围为______.5、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.三、解答题(5小题,每小题10分,共计50分)1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).①当两车之间距离S=300km时,求x的值;②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).2、五和超市购进、两种饮料共200箱,两种饮料的成本与销售价如下表:饮料成本(元/箱)销售价(元/箱)25353550(1)若该超市花了6500元进货,求购进、两种饮料各多少箱?(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,求与的函数关系式,并求购进种饮料多少箱时,可获得最大利润,最大利润是多少?3、某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5 L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为 L,机器工作的过程中每分钟耗油量为 L;(2)求机器工作时y关于x的函数解析式;(3)直接写出油箱中油量为油箱容积的一半时x的值.4、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.5、综合与探究:如图1,平面直角坐标系中,一次函数y=x+3图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.(1)求A,B两点的坐标;(2)求直线BC的表达式,并直接写出点C的坐标;(3)请从A,B两题中任选一题作答.我选择 题.A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由. -参考答案-一、单选题1、A【解析】【分析】由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点P作PM⊥OD于点M, ∵长方形的顶点的坐标分别为,点是的中点,∴点D(5,0)∵,PM⊥OD,∴OM=DM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.2、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、D【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.故选:D.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.5、B【解析】【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.6、A【解析】【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.【详解】∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),∴y随x的增大而减小,∴当x>2时,y<0.故选:A.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为.7、B【解析】【分析】根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.【详解】解:根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式可得:,解得:,∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,当时,,故选:B.【点睛】题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.8、D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:∵x-3≥0,∴x≥3,∵x-4≠0,∴x≠4,综上,x≥3且x≠4,故选:D.【点睛】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9、B【解析】【分析】对取不同值进行验证分析即可.【详解】解:A、当,点P在第一象限,故A不符合题意.B、由于横坐标为,点P一定不在第二象限,故B符合题意.C、当,点P在直线y=x上,故C不符合题意.D、当时,点P在x轴上,故D不符合题意.故选:B.【点睛】本题主要是考查了横纵坐标的取值与其在直角坐标系中的位置关系,熟练根据横纵坐标的不同取值,判断坐标点所在的位置,是解决该题的关键.10、D【解析】【分析】先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.【详解】解:由图可知:A(0,3),xB=1.∵点B在直线y=2x上,∴yB=2×1=2,∴点B的坐标为(1,2),设直线AB的解析式为y=kx+b,则有:,解得:,∴直线AB的解析式为y=-x+3;故选:D.【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.二、填空题1、【解析】【分析】根据“上加下减”的原则求解即可.【详解】解:将直线向下平移2个单位长度,所得的函数解析式为.故答案为:.【点睛】本题考查的是一次函数的图象的平移,熟知函数图象变换的法则是解答此题的关键.2、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.3、【解析】【分析】根据题意可以写出A和B的前几个点的坐标,从而可以发现各点的变化规律,从而可以写出点B2021的坐标.【详解】解:∵直线,令,则,A1(1,0),轴,将代入得点B1坐标为(1,2),在中,同理,点B2的坐标为点A3坐标为,点B3的坐标为,……∴点Bn的坐标为当n=2021时,点B2021的坐标为,即故答案为:【点睛】本题考查一次函数图象上点的坐标特征、规律型,勾股定理,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.4、【解析】【分析】将已知点、代入后可得,再根据的取值范围可得的取值范围.【详解】解:∵一次函数(、是常数,)的图像与轴交于点,与轴交于点,∴,∴,∵,∴,即.故答案为:.【点睛】本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得和的关系是解题关键.5、二【解析】【分析】根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.【详解】解:∵直线y=ax﹣1与直线y=2x+1平行,∴ a=2,∴直线y=ax﹣1的解析式为y=2x﹣1∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;故答案为:二.【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.三、解答题1、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.【解析】【分析】(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;(2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.【详解】解:(1)由图象可得:甲、乙两地之间的距离为450km;设线段AB的解析式为y1=k1x+b1,∵A(0,450),B(3,0),∴,解得:,∴线段AB的解析式为y1=450﹣150x(0≤x≤3);设两车在慢车出发x小时后相遇,()x=450,解得:x=2,答:两车在慢车出发2小时后相遇.故答案为:450;y1=﹣150x+450;2;(2),根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,①当0≤x<2时,S=450x=300,解得:x=,当2≤x<3时,S=x=300,解得:x=(舍去),当3≤x≤6时,S=75x=300,解得:x=4,综上所述:x的值为或4.②其图象为折线图如下:【点睛】本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.2、(1)购进A种饮料箱,则购进B种饮料箱;(2)求购进种饮料箱时,可获得最大利润,最大利润是元【解析】【分析】(1)设购进A种饮料箱,则购进B种饮料箱,根据两种饮料的成本乘以数量等于6500元,列出二元一次方程即可解决问题;(2)根据利润等于销售价减去成本再乘以销量,列出与的函数关系式,进而根据一次函数的性质求得最大值【详解】(1)设购进A种饮料箱,则购进B种饮料箱,根据题意得解得答:购进A种饮料箱,则购进B种饮料箱(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,则随的增大而减小,又时,可获得最大利润,最大利润是(元)【点睛】本题考查了二元一次方程组的应用,一次函数的应用,根据题意列出关系式和方程组是解题的关键.3、(1)3,0.5;(2);(3)5或40【解析】【分析】观察图像(1)机器均匀加油30L共用10min,工作50min均匀耗油25L,故可求出每分钟的加油量与耗油量.(2)设解析式为,将、代入解出的值,回代求出解析式.(3)含油量为一半时分加油和工作耗油两种情况,加油时的解析式为,将分别代入两个解析式,即可求得的值.【详解】解:(1)每分钟加油量为L;每分钟耗油量为L;故答案为:3;0.5.(2)设解析式为,将、代得解得(3)加油时的解析式为;工作时解析式为;将代入解得,故答案为:5或40.【点睛】本题考查了一次函数解析式.解题的关键与难点在于理解图像中各点的含义.4、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【解析】【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.5、(1)(﹣6,0),(0,3);(2)y=﹣x+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(﹣14,﹣4);选B,存在,点P的坐标为(2,+3)或(﹣2,﹣+3).【解析】【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;(2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;(3)A.过点P作PH⊥x轴于H,设点P(x,x+3),则PH=,根据S△ACP=AC•PH=18可得PH的值,即可求解.B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.【详解】解:(1)当y=0时,x+3=0,解得x=﹣6,则A点坐标为(﹣6,0);当x=0时,y=x+3=3,则B点坐标为(0,3);(2)将B点坐标(0,3)代入一次函数y=﹣x+b得:b=3,∴直线BC的表达式为y=﹣x+3,当y=0时,﹣x+3=0,解得x=3,则C点坐标为(3,0);(3)A.过点P作PH⊥x轴于H,设点P(x,x+3),∴PH=,∵A点坐标为(﹣6,0),C点坐标(3,0),∴AC=9,∵S△ACP=AC•PH=×9•PH=18,∴PH=4,∴x+3=±4,当x+3=4时,x=2;当x+3=﹣4时,x=﹣14,∴存在,点P的坐标为(2,4)或(﹣14,﹣4);B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,﹣x+3),∴PQ=,∵B点坐标(0,3),C点坐标(3,0),∴OB=OC=3,∴BC=,∵PQ=BC,∴,解得:x=或﹣,∴存在,点P的坐标为(2,+3)或(﹣2,﹣+3).【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.
相关试卷
这是一份初中北京课改版第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知一次函数与一次函数中,函数,下面哪个点不在函数的图像上.等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步测试题,共25页。试卷主要包含了已知函数和 的图象交于点P,函数的图象如下图所示等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共26页。试卷主要包含了正比例函数y=kx的图象经过一,函数的图象如下图所示,已知点P,已知函数和 的图象交于点P等内容,欢迎下载使用。