初中数学北京课改版八年级下册第十四章 一次函数综合与测试巩固练习
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试巩固练习,共25页。试卷主要包含了下列命题为真命题的是等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )A. B. C. D.2、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)3、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )A.2 B.-1 C.-2 D.44、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向5、如图,直线l是一次函数的图象,下列说法中,错误的是( )A.,B.若点(-1,)和点(2,)是直线l上的点,则C.若点(2,0)在直线l上,则关于x的方程的解为D.将直线l向下平移b个单位长度后,所得直线的解析式为6、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示7、下列命题为真命题的是( )A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,,则C.的算术平方根是9 D.点一定在第四象限8、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )A. B.C. D.9、关于一次函数y=﹣2x+3,下列结论正确的是( )A.图象与x轴的交点为(,0)B.图象经过一、二、三象限C.y随x的增大而增大D.图象过点(1,﹣1)10、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为( )A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.2、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.3、平面直角坐标系中,点P(3,-4)到x轴的距离是________.4、一次函数与的图象如图所示,则关于、的方程组的解是______.5、如图,函数和的图象相交于,则不等式的解集为____.三、解答题(5小题,每小题10分,共计50分)1、如图(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?(2)如何确定敌方战舰B的位置?2、寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下:方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠;方案二:不购买学生寒假专享卡,每次健身费用按八折优惠.设某学生健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.在平面直角坐标系中的函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求k2的值;(3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由.(4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次?3、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元. 普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)在直角坐标系内画出这个函数图象;(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?4、综合与探究:如图1,平面直角坐标系中,一次函数y=x+3图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.(1)求A,B两点的坐标;(2)求直线BC的表达式,并直接写出点C的坐标;(3)请从A,B两题中任选一题作答.我选择 题.A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由.5、综合与实践:制作一个无盖长方形盒子.用一张正方形的纸片制成一个如图的无盖长方体纸盒.如果我们按照如图所示的方式,将正方形的四个角减掉四个大小相同的小正方形,然后沿虚线折起来,就可以做成一个无盖的长方体盒子.(1)如果原正方形纸片的边长为a cm,剪去的正方形的边长为b cm,则折成的无盖长方体盒子的高为________cm,底面积为_______cm2,请你用含a,b的代数式来表示这个无盖长方体纸盒的容积__________cm3;(2)如果a=20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,折成的无盖长方体的容积分别是多少?请你将计算的结果填入下表;剪去正方形的边长/cm12345678910容积/cm3324512__________500384252128360(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?( )A.一直增大 B.一直减小C.先增大后减小 D.先减小后增大(4)分析猜想当剪去图形的边长为__________时,所得的无盖长方体的容积最大,此时无盖长方体的容积是____________cm3.(5)对(2)中的结果,你觉得表格中的数据还有什么要改进的地方吗? -参考答案-一、单选题1、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.【详解】解:∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).若∠BAC=90°,如图1,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,,∴△ABO≌△CAE(AAS),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C的坐标是(7,5).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+2.故选:D.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.2、A【解析】【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.3、C【解析】【分析】首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.【详解】解:由题意得:x=1时,y=k+3,∵在x=1处,自变量增加2,函数值相应减少4,∴x=3时,函数值是k+3-4,∴3k+3=k+3-4,解得:k=-2,故选C.【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.4、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.5、B【解析】【分析】根据一次函数图象的性质和平移的规律逐项分析即可.【详解】解:A.由图象可知,,,故正确,不符合题意;B. ∵-1<2,y随x的增大而减小,∴,故错误,符合题意;C. ∵点(2,0)在直线l上,∴y=0时,x=2,∴关于x的方程的解为,故正确,不符合题意;D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;故选B.【点睛】本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键.6、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.7、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=小时, B车到达甲地时间为120÷90=小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤时,y=120-60x-90x=-150x+120;当<x≤时,y=60(x-)+90(x-)=150x-120;当<x≤2是,y=60x;由函数解析式的当x=时,y=150×-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.9、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.【详解】解:A.当y=0时,﹣2x+3=0,解得:x=,∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;B.∵k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;C.∵k=﹣2<0,∴y随x的增大而减小,选项C不符合题意;D.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.故选:A.【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.10、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,∴该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.二、填空题1、y=48x+20(x>2)##y=20+48x(x>2)【解析】【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:y=(60x-100)×0.8+100=48x+20(x>2),故答案为:y=48x+20(x>2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.2、二【解析】【分析】根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.【详解】解:∵直线y=ax﹣1与直线y=2x+1平行,∴ a=2,∴直线y=ax﹣1的解析式为y=2x﹣1∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;故答案为:二.【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.3、4【解析】【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.4、【解析】【分析】根据一次函数与的图象可知交点的横坐标为,将代入即可求得纵坐标的值,则的值即可为方程组的解【详解】解:∵一次函数与的图象交点的横坐标为,∴当,是方程组的解故答案为:【点睛】本题考查了两直线的交点与二元一次方程组的解,数形结合是解题的关键.5、【解析】【分析】观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集.【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,.∴不等式的解集为,故答案为:.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题1、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.【解析】【分析】(1)根据图中的位置与方向即可确定.(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.【详解】(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.【点睛】本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.2、(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析【解析】【分析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可; (2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值; (3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.(4)分别求解小琳选择方案一,方案二的健身次数,再比较即可得到答案.【详解】解:(1)∵过点(0,30),(10,180), ∴,解得:, 表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元; (2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k2=25×0.8=20; (3)选择方案一所需费用更少.理由如下: 由题意可知,y1=15x+30,y2=20x. 当健身8次时, 选择方案一所需费用:y1=15×8+30=150(元), 选择方案二所需费用:y2=20×8=160(元), ∵150<160, ∴选择方案一所需费用更少.(4)当时, 解得: 即小琳选择方案一时,可以健身18次,当时,则 解得: 即小琳选择方案二时,可以健身15次, 所以小琳最多健身18次.【点睛】本题考查了一次函数的应用,最优化选择问题,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.3、(1)三人间8间,双人间13间;(2)(50﹣x),y=﹣10x+1750(0≤x<50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元【解析】【分析】①分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;②根据收费列出表达式整理即可;③因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数.【详解】解:(1)设租住三人间m间,双人间n间,根据题意,解得,∴三人间8间,双人间13间;(2)双人间住了(50﹣x)人,根据题意y=[50x+70(50﹣x)]×50%即y=﹣10x+1750(0≤x<50,且x为整数);(3)因为两种房间正好住满所以x的值为3的倍数而(50﹣x)还是2的倍数因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元.【点睛】本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意.4、(1)(﹣6,0),(0,3);(2)y=﹣x+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(﹣14,﹣4);选B,存在,点P的坐标为(2,+3)或(﹣2,﹣+3).【解析】【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;(2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;(3)A.过点P作PH⊥x轴于H,设点P(x,x+3),则PH=,根据S△ACP=AC•PH=18可得PH的值,即可求解.B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.【详解】解:(1)当y=0时,x+3=0,解得x=﹣6,则A点坐标为(﹣6,0);当x=0时,y=x+3=3,则B点坐标为(0,3);(2)将B点坐标(0,3)代入一次函数y=﹣x+b得:b=3,∴直线BC的表达式为y=﹣x+3,当y=0时,﹣x+3=0,解得x=3,则C点坐标为(3,0);(3)A.过点P作PH⊥x轴于H,设点P(x,x+3),∴PH=,∵A点坐标为(﹣6,0),C点坐标(3,0),∴AC=9,∵S△ACP=AC•PH=×9•PH=18,∴PH=4,∴x+3=±4,当x+3=4时,x=2;当x+3=﹣4时,x=﹣14,∴存在,点P的坐标为(2,4)或(﹣14,﹣4);B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,﹣x+3),∴PQ=,∵B点坐标(0,3),C点坐标(3,0),∴OB=OC=3,∴BC=,∵PQ=BC,∴,解得:x=或﹣,∴存在,点P的坐标为(2,+3)或(﹣2,﹣+3).【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.5、 (1)b;(a-2b)2;b(a-2b)2(2)588;576(3)C(4)3;588(5)表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位【解析】【分析】(1)根据截去的小正方形边长,得出无盖长方体盒子的高为bcm,然后求出底面边长,再求底面积,和体积即可;(2)根据截去的边长,求出底面边长,再求出无盖的长方体盒子的体积即可;(3)根据表格的信息可得随着减去的小正方形的边长的增大,得出无盖长方体盒子的容积变化规律;(4)根据表格得出截去小正方形边长为整数3时,体积最大,计算即可;(5)根据精确度要求越高,无盖长方体盒子的容积会更大些.(1)解:无盖长方体盒子的高就是截去的小正方形边长,无盖长方体盒子的高为bcm,底面边长(a-2b)cm,底面面积为(a-2b)2cm2, 做成一个无盖的长方体盒子的体积为b(a-2b)2cm3,
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时练习,共32页。试卷主要包含了下面哪个点不在函数的图像上.等内容,欢迎下载使用。
这是一份数学八年级下册第十四章 一次函数综合与测试课时训练,共24页。试卷主要包含了变量,有如下关系,已知点A等内容,欢迎下载使用。
这是一份初中数学第十四章 一次函数综合与测试练习,共24页。试卷主要包含了已知一次函数与一次函数中,函数等内容,欢迎下载使用。