初中第十四章 一次函数综合与测试课后测评
展开
这是一份初中第十四章 一次函数综合与测试课后测评,共27页。
京改版八年级数学下册第十四章一次函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2、已知函数和 的图象交于点P(-2,-1),则关于x,y的二元一次方程组的解是( )A. B. C. D.3、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向4、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )A. B. C. D.5、如图,每个小正方形的边长为1,在阴影区域的点是( ) A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)6、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )A.100 m/min,266m/min B.62.5m/min,500m/minC.62.5m/min,437.5m/min D.100m/min,500m/min7、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )A.-1008 B.-1010 C.1012 D.-10128、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )A. B. C. D.9、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )A. B. C. D.10、如图,直线l是一次函数的图象,下列说法中,错误的是( )A.,B.若点(-1,)和点(2,)是直线l上的点,则C.若点(2,0)在直线l上,则关于x的方程的解为D.将直线l向下平移b个单位长度后,所得直线的解析式为第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点在直角坐标系的轴上,等于 ____.2、将函数的图像向下平移2个单位长度,则平移后的图像对应的函数表达式是______.3、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.4、函数的定义域是 _____.5、平面直角坐标系中,点O为坐标原点,点A(4,2)、点B(0,5),直线y=kx﹣2k+1恰好将△ABO平均分成面积相等的两部分,则k的值是_________.三、解答题(5小题,每小题10分,共计50分)1、如图1,直线的解析式为,点坐标为,点关于直线的对称点点在直线上.(1)求直线的解析式;(2)如图2,在轴上是否存在点,使与的面积相等,若存在求出点坐标,若不存在,请说明理由;(3)如图3,过点的直线.当它与直线夹角等于45°时,求出相应的值.2、如图,在平面直角坐标系xoy中,的顶点O是坐标原点,点A在第一象限,点B在x轴的正半轴上,且,,点C是直线OC上一点,且在第一象限,,满足关系式.(1)请直接写出点A的坐标;(2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边或边AB于点Q,交OC于点R.设点P的横坐标为t,线段QR的长度为m.当时,直线l恰好过点C.①求直线OC的函数表达式;②当时,请直接写出点P的坐标;③当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值.3、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:(1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;(2)求当王亮距离李刚家1.5千米时,的值.4、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).①当两车之间距离S=300km时,求x的值;②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).5、如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足,C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P.(1)如图1,写出a、b的值,证明△AOP≌△BOC;(2)如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,求证:S△BDM﹣S△ADN=4. -参考答案-一、单选题1、C【解析】【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.2、B【解析】【分析】由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.【详解】解:∵函数y=ax-3和y=kx的图象交于点P的坐标为(-2,﹣1),∴关于x,y的二元一次方程组的解是.故选B.【点睛】本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.3、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.4、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.【详解】解:∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).若∠BAC=90°,如图1,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,,∴△ABO≌△CAE(AAS),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C的坐标是(7,5).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+2.故选:D.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.5、C【解析】【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.故选:C.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.6、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.故选:D.【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7、C【解析】【分析】首先确定角码的变化规律,利用规律确定答案即可.【详解】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0)…,∵2021÷4=505余1,∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,∴A2021的坐标为(1012,0).故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.8、A【解析】【分析】由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点P作PM⊥OD于点M, ∵长方形的顶点的坐标分别为,点是的中点,∴点D(5,0)∵,PM⊥OD,∴OM=DM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.9、D【解析】【分析】利用x=-1时,求函数值进行一一检验是否为1即可【详解】解: 当x=-1时,,图象不过点,选项A不合题意;当x=-1时,,图象不过点,选项B不合题意;当x=-1时,,图象不过点,选项C不合题意;当x=-1时,,图象过点,选项D合题意;故选择:D.【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.10、B【解析】【分析】根据一次函数图象的性质和平移的规律逐项分析即可.【详解】解:A.由图象可知,,,故正确,不符合题意;B. ∵-1<2,y随x的增大而减小,∴,故错误,符合题意;C. ∵点(2,0)在直线l上,∴y=0时,x=2,∴关于x的方程的解为,故正确,不符合题意;D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;故选B.【点睛】本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键.二、填空题1、-1【解析】【分析】让纵坐标为0得到m的值,计算可得点P的坐标.【详解】解:∵点P(3,m+1)在直角坐标系x轴上,∴m+1=0,解得m=-1,故选:-1.【点睛】考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.2、【解析】【分析】根据“上加下减”的原则求解即可.【详解】解:将直线向下平移2个单位长度,所得的函数解析式为.故答案为:.【点睛】本题考查的是一次函数的图象的平移,熟知函数图象变换的法则是解答此题的关键.3、(﹣3,1)【解析】【分析】点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.【详解】解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.4、x≠0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.【详解】解:函数的定义域是:x≠0.故答案为:x≠0.【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5、﹣2【解析】【分析】由题意可得直线y=kx﹣2k+1恒过,进而依据直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,代入点B(0,5)即可求解.【详解】解:如图,由,可知当,不论k取何值,,即直线y=kx﹣2k+1恒过,又因为点O为坐标原点,点A(4,2),可知为OA中点,可知当直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,所以代入点B(0,5)可得:,解得:.故答案为:.【点睛】本题考查一次函数解析式与三角形的综合,熟练掌握三角形的中线平分三角形的面积是解题的关键.三、解答题1、故答案为:b;(a-2b)2;b(a-2b)(2)解:当b=3cm, a-2b=20-6=14cm,b(a-2b)2=3×142=588cm3,当b=4,a-2b=20,8=12cm,b(a-2b)2=4×122=576cm3,故答案为:588;576.(3)解:随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积先变大,再变小.故选择C.(4)根据无盖长方体盒子的容积的变化,截去的正方形边长在3cm时,无盖长方体盒子的容积2、(1)(3,3);(2)①直线OC的函数表达式为;②点P坐标为(,0)或(,0);③t的值为,或【解析】【分析】(1)过A作AD⊥x轴于点D,根据等腰直角三角形的性质得出OD=OA=3,即可得到A坐标为(3,3),;(2)①由,且,可得OC=,在中,利用勾股定理求得BC的值,即可得到点C坐标,设出直线OC的函数表达式为y=kx,把(6,2)代入 求出k的值,即可得到直线OC的函数表达式;②先求出直线AB的解析式,由题意点得P(t,0),Q(t,t)或(t,),R(t,),列出方程,即可求得点P坐标;③先求出点H的坐标为(,),再根据面积法求出,最后分两种情况讨论即可.【详解】(1)过A作AD⊥x轴于点D,∵OB=6,OA=AB,∠OAB=90°,∴AD平分∠OAB,且OD=BD=3,∴∠OAD=∠AOD=45°,∴OD=DA=3,∴A坐标为(3,3),故答案为:(3,3);(2)①∵,且,∴OC=,当时,点P坐标为(6,0),∵直线l恰好过点C,,,,点C坐标为(6,2),设直线OC的函数表达式为y=kx,把(6,2)代入,得:6k=2,解得,故直线OC的函数表达式为;②设直线OC与直线AB交于点H,直线AB的解析式为,∴,∴,∴直线AB的解析式为,∵点P的横坐标为t,点R在直线上,∴点P(t,0),Q(t,t)或(t,),R(t,),∵线段QR的长度为m,∴或当时,或 解得:或或 故点P坐标为(,0)或(,0)或(,0);③∵直线AB的解析式为,联立,解得,∴点H的坐标为(,),∴,,,∵,∴,过点A作AM⊥直线l,AN⊥直线OC,如图:或则:AM=,∵直线RQ与直线OC所组成的角被射线RA平分,AM=AN,即=,解得或,故t的值为或.【点睛】此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.3、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2).【解析】【分析】(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;,函数过点(15,2)(30,6.5)代入得方程组,然后解方程组即可;(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.【详解】解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;函数过点(15,2)(30,6.5)代入得:,解得:,∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2)设修车之前解析式为,代入(10,2)得:,解得,∴,当s=1.5时,,解得分.【点睛】本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.4、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.【解析】【分析】(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;(2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.【详解】解:(1)由图象可得:甲、乙两地之间的距离为450km;设线段AB的解析式为y1=k1x+b1,∵A(0,450),B(3,0),∴,解得:,∴线段AB的解析式为y1=450﹣150x(0≤x≤3);设两车在慢车出发x小时后相遇,()x=450,解得:x=2,答:两车在慢车出发2小时后相遇.故答案为:450;y1=﹣150x+450;2;(2),根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,①当0≤x<2时,S=450x=300,解得:x=,当2≤x<3时,S=x=300,解得:x=(舍去),当3≤x≤6时,S=75x=300,解得:x=4,综上所述:x的值为或4.②其图象为折线图如下:【点睛】本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.5、(1)a=4,b=﹣4,见解析;(2)见解析;(3)见解析【解析】【分析】(1)先依据非负数的性质求得、的值从而可得到,然后再,,最后,依据可证明;(2)要证,只需证明平分,过分别作于点,作于点,只需证到,只需证明即可;(3)连接,易证,从而有,由此可得.【详解】(1)解:,,,,,则.即,,,.在与中,,;(2)证明:过分别作于点,作于点.在四边形中,,.,,在与中,,,.,,平分,;(3)证明:如图:连接.,,为的中点,,,,,,.即,.在与中,,,..【点睛】本题是一次函数综合题,考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(3)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键.
相关试卷
这是一份数学八年级下册第十四章 一次函数综合与测试课时训练,共24页。试卷主要包含了变量,有如下关系,已知点A等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步练习题,共33页。试卷主要包含了已知点A,若点在第三象限,则点在.,点P在第二象限内,P点到x等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题,共21页。试卷主要包含了变量,有如下关系,点A个单位长度.,若一次函数y=kx+b等内容,欢迎下载使用。