数学北京课改版第十四章 一次函数综合与测试课后练习题
展开
这是一份数学北京课改版第十四章 一次函数综合与测试课后练习题,共22页。试卷主要包含了变量,有如下关系,一次函数的一般形式是,已知函数和 的图象交于点P等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )A. B. C. D.2、在平面直角坐标系中,任意两点,,,.规定运算:①,;②;③当,且时,.有下列三个命题:(1)若,,则,;(2)若,则;(3)对任意点,,,均有成立.其中正确命题的个数为( )A.0个 B.1个 C.2个 D.3个3、已知点A(a+9,2a+6)在y轴上,a的值为( )A.﹣9 B.9 C.3 D.﹣34、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①5、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个6、一次函数的一般形式是(k,b是常数)( )A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x7、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )A.-3 B.-1 C.2 D.48、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)9、已知函数和 的图象交于点P(-2,-1),则关于x,y的二元一次方程组的解是( )A. B. C. D.10、已知一次函数y=kx+b的图象如图所示,则一次函数y=﹣bx+k的图象大致是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将函数y=3x-4 的图像向上平移5个单位长度,所得图像对应的函数表达式为_______.2、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;3、甲、乙两人相约周末登山,甲、乙两人距地面的高度y/m与登山时间x/min之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)b=_______m;(2)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则登山_______min时,他们俩距离地面的高度差为70m.4、先设出_____,再根据条件确定解析式中_____,从而得出函数解析式的方法,叫待定系数法.5、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为 _____升.三、解答题(5小题,每小题10分,共计50分)1、某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5 L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为 L,机器工作的过程中每分钟耗油量为 L;(2)求机器工作时y关于x的函数解析式;(3)直接写出油箱中油量为油箱容积的一半时x的值.2、利用函数图象解方程组.3、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益.4、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:(1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;(2)求当王亮距离李刚家1.5千米时,的值.5、某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠.乙旅行社提出每人次收350元车费和住宿费,但有3人可享受免费待遇.(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式;(2)如果组织20人的旅行团时,选哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多? -参考答案-一、单选题1、D【解析】【分析】利用x=-1时,求函数值进行一一检验是否为1即可【详解】解: 当x=-1时,,图象不过点,选项A不合题意;当x=-1时,,图象不过点,选项B不合题意;当x=-1时,,图象不过点,选项C不合题意;当x=-1时,,图象过点,选项D合题意;故选择:D.【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.2、D【解析】【分析】根据新的运算定义分别判断每个命题后即可确定正确的选项.【详解】解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,∴①正确;(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),∵A⊕B=B⊕C,∴x1+x2=x2+x3,y1+y2=y2+y3,∴x1=x3,y1=y3,∴A=C,∴②正确.(3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),∴(A⊕B)⊕C=A⊕(B⊕C),∴③正确.正确的有3个,故选:D.【点睛】本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、A【解析】【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点A(a+9,2a+6)在y轴上,∴a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.5、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.6、C【解析】【分析】根据一次函数的概念填写即可.【详解】解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,故选:C.【点睛】本题考查了一次函数的概念,做题的关键是注意k≠0.7、B【解析】【分析】先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.【详解】解:根据题意,∵y1>y2,∴,解得:,∴,∴;,∵当x<1时,y1>y2,∴∴,∴;∴k的值可以是-1;故选:B.【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.8、A【解析】【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.9、B【解析】【分析】由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.【详解】解:∵函数y=ax-3和y=kx的图象交于点P的坐标为(-2,﹣1),∴关于x,y的二元一次方程组的解是.故选B.【点睛】本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.10、D【解析】【分析】根据题目中的一次函数图像判断出、的正负,进而确定y=﹣bx+k的参数正负,最后根据一次函数图像与参数的关系,找出根据符题意的图像即可.【详解】解:由题意及图像可知:,,y=﹣bx+k中的,,由一次函数图像与参数的关系可知:D选项符合条件,故选:D.【点睛】本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键.二、填空题1、##y=1+3x【解析】【分析】直接利用一次函数平移规律“上加下减”求解即可.【详解】解:∵将一次函数的图象向上平移5个单位长度,∴平移后所得图象对应的函数关系式为:,故答案为:.【点睛】此题主要考查了一次函数图象的平移,熟练记忆函数平移规律是解题关键.2、V=100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V与h的关系为V=100h;故答案为:V=100h.【点睛】本题主要考查了列函数关系式,题目比较简单.3、 30 3、10、13【解析】【分析】(1)根据路程与时间求出乙登山速度,再求2分钟路程即可;(2)先求甲速度,再求出乙提速后得速度,再用待定系数法求AB与CD解析式,根据解析式组成方程组求出相遇时间,利用两函数之差=70建构方程求出相遇后相差70米的时间或乙到终点相距70米的时间即可.【详解】解:(1)内乙的速度为15÷1=15m/min,∴;(2)甲登山上升速度是(m/min),乙提速后速度是(m/min).(min).设甲函数表达式为,把(0,100),(20,300)代入,得解得.设乙提速前的函数表达式为.把(1,15)代入,得,设乙提速后的函数表达式为,把(2,30),(11,300)代入,得解得,当时,解得;当时,解得;当时,解得.综上所述:登山3min、10min、13min时,他们俩距离地面的高度差为70m.【点睛】本题考查一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程,掌握一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程是解题关键.4、 解析式 未知的系数【解析】【分析】根据待定系数法的概念填写即可.【详解】解:先设出函数的解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫待定系数法,故答案为:①解析式 ②未知的系数.【点睛】本题考查了待定系数法的概念,做题的关键是牢记概念.5、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可.【详解】解:根据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10.【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.三、解答题1、(1)3,0.5;(2);(3)5或40【解析】【分析】观察图像(1)机器均匀加油30L共用10min,工作50min均匀耗油25L,故可求出每分钟的加油量与耗油量.(2)设解析式为,将、代入解出的值,回代求出解析式.(3)含油量为一半时分加油和工作耗油两种情况,加油时的解析式为,将分别代入两个解析式,即可求得的值.【详解】解:(1)每分钟加油量为L;每分钟耗油量为L;故答案为:3;0.5.(2)设解析式为,将、代得解得(3)加油时的解析式为;工作时解析式为;将代入解得,故答案为:5或40.【点睛】本题考查了一次函数解析式.解题的关键与难点在于理解图像中各点的含义.2、.【解析】【分析】直接利用两函数图象的交点横纵坐标即为x,y的值进而得出答案.【详解】解:方程组对应的两个一次函数为:与,画出这两条直线,如图所示:由图像知两直线交点坐标为(-1,1).所以原方程组的解为.【点睛】此题主要考查了一次函数与二元一次方程组的解,正确利用数形结合分析是解题关键.3、 (1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【解析】【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为元.则,分三种情形讨论利用一次函数的性质即可解决问题.(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,∴,答:一件B型商品的进价为150元,则一件A型商品的进价为160元;(2)解:∵客商购进A型商品m件,∴客商购进B型商品件,由题意:,∵A型商品的件数不大于B型的件数,且不小于80件,∵,∴;(3)解:设收益为元,则,①当时,即时,w随m的增大而增大,∴当时,最大收益为元;②当,即时,最大收益为17500元;③当时,即时,w随m的增大而减小,∴时,最大收益为元,∴当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元.【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键.4、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2).【解析】【分析】(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;,函数过点(15,2)(30,6.5)代入得方程组,然后解方程组即可;(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.【详解】解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;函数过点(15,2)(30,6.5)代入得:,解得:,∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2)设修车之前解析式为,代入(10,2)得:,解得,∴,当s=1.5时,,解得分.【点睛】本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.5、(1)见解析;(2)组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多【解析】【分析】(1)根据甲旅行社的收费方案写出甲的函数关系;根据乙旅行社的收费方案,分x≤3和x>3两种情况写出函数关系式即可;(2)把x=20分别代入函数关系式计算,然后判断即可;根据所需费用一样列出方程,然后求解即可.【详解】解:(1)甲旅行社:y=300x,乙旅行社:x≤3时,y=350x,x>3时,y=350(x-3)=350x-1050;(2)当x=20时,甲:y=300×20=6000元,乙:y=350×20-1050=5950元;所以组织20人的旅行团时,选乙家旅行社比较合算;300x=350x-1050,解得x=21,答:组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家旅行社的收费方法是解题的关键.
相关试卷
这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。
这是一份数学八年级下册第十四章 一次函数综合与测试课后作业题,共24页。试卷主要包含了一次函数y=mx﹣n,若点在第三象限,则点在.等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试精练,共27页。试卷主要包含了已知点A,正比例函数y=kx的图象经过一等内容,欢迎下载使用。