北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练
展开这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共22页。试卷主要包含了下列命题中,是真命题的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
2、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
A.70° B.80° C.100° D.110°
3、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
4、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165° B.155° C.145° D.135°
5、下列命题中,是真命题的是( )
A.同位角相等 B.同旁内角相等,两直线平行
C.平行于同一直线的两直线平行 D.相等的角是对顶角
6、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
7、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
8、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是( )
A.152° B.28° C.52° D.90°
9、∠A的余角是30°,这个角的补角是( )
A.30° B.60° C.120° D.150°
10、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是______.
2、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
3、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.
4、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.
5、如图,已知∠BOA=90°,直线CD经过点O, 若∠BOD:∠AOC=5:2,则∠AOC=_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线交于点,于点,且的度数是的4倍.
(1)求的度数;
(2)求的度数.
2、已知,,三点在同一条直线上,平分,平分.
(1)若,如图1,则 ;
(2)若,如图2,求的度数;
(3)若如图3,求的度数.
3、如图,直线、相交于点,是平分线,,求度数.
4、【感知】已知:如图①,点E在AB上,且CE平分,.求证:.
将下列证明过程补充完整:
证明:∵CE平分(已知),
∴__________(角平分线的定义),
∵(已知),
∴___________(等量代换),
∴(______________).
【探究】已知:如图②,点E在AB上,且CE平分,.求证:.
【应用】如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
5、如图,OC是∠AOB的平分线,且∠AOD=90°,∠COD=27°.求∠BOD的度数.
---------参考答案-----------
一、单选题
1、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
2、B
【分析】
先证明DEBC,根据平行线的性质求解.
【详解】
解:因为∠B=∠ADE=70°
所以DEBC,
所以∠DEC+∠C=180°,所以∠C=80°.
故选:B.
【点睛】
此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
3、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
4、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
5、C
【分析】
根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.
【详解】
解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;
B、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;
C、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;
D、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;
故选:C
【点睛】
本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.
6、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
7、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
8、A
【分析】
根据两个角互为补角,它们的和为180°,即可解答.
【详解】
解:∵∠A与∠B互为补角,
∴∠A+∠B=180°,
∵∠A=28°,
∴∠B=152°.
故选:A
【点睛】
本题考查了补角,解决本题的关键是熟记补角的定义.
9、C
【分析】
根据一个角的补角比这个角的余角大列式计算即可得解.
【详解】
解:一个角的余角是,
这个角的补角是.
故选:C.
【点睛】
本题考查了余角和补角,解题的关键是熟记概念并理清余角和补角的关系.
10、D
【分析】
由,证明,再利用角的和差求解 从而可得答案.
【详解】
解:如图,标注字母, ,
∴,
此时的航行方向为北偏东30°,
故选:D.
【点睛】
本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
二、填空题
1、15°
【分析】
根据平行线的性质和三角板的特殊角的度数解答即可.
【详解】
解:如图:
∵ABCD,
∴∠BAD=∠D=30°,
∵∠BAE=45°,
∴∠α=45°﹣30°=15°,
故答案为:15°.
【点睛】
此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.
2、130°或50°
【分析】
根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
【详解】
①如图,
,
,
②如图,
,
,
综上所述,或
故答案为:130°或50°
【点睛】
本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
3、48° 132° 48°
【分析】
根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.
【详解】
解:∵ //,∠1=48°,
∴∠2=∠1=48°,
∵ //,∠1=48°,
∴∠4=∠1=48°,
∵ //,
∴∠3+∠4=180°
∴∠3=180°-∠4=180°-48°=132°
故答案为:48°;132°;48°
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
4、或
【分析】
设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.
【详解】
解:设的度数为,则的度数为,
如图1,和互相平行,可得:∠2=∠3,
同理:∠1=∠3,
∴∠2=∠1,
∴当两角相等时:,
解得:,
如图2,和互相平行,可得:∠2+∠3=,
而和互相平行,得∠1=∠3,
∴∠2+∠1=,
∴当两角互补时:,
解得:,
,
故填:或.
【点睛】
本题考查平行线的性质和方程的应用,分类讨论思想是关键.
5、60°度
【分析】
根据一个角的余角与这个角的补角的关系,可得∠BOD与∠AOC的关系,从而列方程,可得答案.
【详解】
解:∵∠AOC+∠BOC=90°,∠BOD+∠BOC=180°,
∴∠BOD=∠AOC+90°,
∵∠BOD:∠AOC=5:2,
∴∠BOD=∠AOC,
∴∠AOC=∠AOC+90°,
解得∠AOC=60°,
故答案为:60°.
【点睛】
本题考查了角的计算,解一元一次方程的应用,掌握利用一个角的余角与这个角的补角的关系是解题关键.
三、解答题
1、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°
【解析】
【分析】
(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;
(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.
【详解】
解:(1)∵的度数是的4倍,
∴∠BOD=4∠AOD,
又∵∠AOD+∠BOD=180°,
∴5∠AOD=180°,
∴∠AOD=36°,
∴∠BOD=144°;
(2)∵OE⊥CD,
∴∠DOE=90°,
∴∠BOE=∠BOD-∠DOE=54°.
【点睛】
本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.
2、(1)90;(2)90°;(3)90°
【解析】
【分析】
(1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;
(2)由,则,同(1)即可得出结果;
(3)易证,同(1)得,,即可得出结果.
【详解】
解:(1),,三点在同一条直线上,
,
,
,
平分,平分,
,,
,
故答案为:90;
(2),
,
同(1)得:,,
;
(3),
,
同(1)得:,,
.
【点睛】
本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.
3、77°
【解析】
【分析】
由题意根据平角的定义以及角平分线的性质可以求得∠AOE的度数.
【详解】
解:∵OE是∠AOD的平分线,∠AOC=26°,
∴∠AOD=180°-∠AOC=154°,
∴∠AOE=∠AOD=77°.
【点睛】
本题考查角平分线的定义,邻补角、对顶角,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想进行解答.
4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
【解析】
【分析】
感知:读懂每一步证明过程及证明的依据,即可完成解答;
探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
【详解】
感知
∵CE平分(已知),
∴ECD(角平分线的定义),
∵(已知),
∴ECD(等量代换),
∴(内错角相等,两直线平行).
故答案为:ECD;ECD;内错角相等,两直线平行
探究
∵CE平分,
∴,
∵,
∴,
∵.
应用
∵BE平分∠DBC,
∴,
∵AE∥BC,
∴∠CBE=∠E,∠BAE+∠ABC=180゜,
∴∠E=∠ABE,
∵,
∴∠ABC=80゜
∴
∴
【点睛】
本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
5、36°
【解析】
【分析】
利用余角的性质,角的平分线的定义,角的和差计算法则计算即可.
【详解】
∵∠AOD=90°,∠COD=27°,
∴∠AOC=∠AOD-∠COD=90°-27°=63°;
∵OC是∠AOB的平分线,
∴∠AOC=∠BOC=63°;
∴∠BOD=∠BOC -∠COD=63°-27°=36°.
【点睛】
本题考查了几何图形中的角的计算,角的平分线即把一个角分成两个相等的角的射线,余角的性质,正确理解图形和图形中的角的关系是解题的关键.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共22页。试卷主要包含了下列说法中正确的是,下列语句中,是命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共20页。试卷主要包含了如图,C,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共21页。试卷主要包含了如图,下列命题中,为真命题的是等内容,欢迎下载使用。