初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试当堂达标检测题
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试当堂达标检测题,共21页。试卷主要包含了若的余角为,则的补角为,若的补角是125°,则的余角是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为( )A.75°14′ B.59°86′ C.59°46′ D.14°46′2、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是( )A.∠1 B. C.∠2 D.3、下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤ B.①②④ C.①③④ D.②③④⑤4、若的余角为,则的补角为( )A. B. C. D.5、一个角的余角比这个角的补角的一半小40°,则这个角为( )A.50° B.60° C.70° D.80°6、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°7、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b8、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,b∥a,c∥a,求证:b∥c;证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴b∥c.小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠59、若的补角是125°,则的余角是( )A.90° B.54° C.36° D.35°10、如所示各图中,∠1与∠2是对顶角的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一条等宽的纸条按图中方式折叠,若∠1=40°,则∠2的度数为 ___.2、已知∠α与∠β互余,且∠α=40°,则∠β的度数为________.3、已知∠α=65°14'15″,那么∠α的余角等于 _____.4、如图所示,,点B,O,D在同一直线上,若,则的度数为______.5、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,求∠DOE和∠BOD;(2)设∠COE=α,∠BOD=β,试探究α与β之间的数量关系.2、如图(甲),∠AOC和∠BOD都是直角.(1)如果∠DOC=29°,那么∠AOB的度数为 度.(2)找出图(甲)中相等的角.如果∠DOC≠29°,他们还会相等吗?(3)若∠DOC越来越小,则∠AOB如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角.3、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.(1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.4、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.5、如图,O是直线AB上点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD与∠EOC具有的数量关系,并说明理由. ---------参考答案-----------一、单选题1、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C.【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.2、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=,∠3即为所求.【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3,∴∠3=,∴∠2的余角为,故选B.【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.3、A【分析】根据命题的定义分别进行判断即可.【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;②同位角相等吗?是疑问句,不是命题,不符合题意;③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;④如果a>b,b>c,那么a>c,是命题,符合题意;⑤直角都相等,是命题,符合题意,命题有①④⑤.故选:A.【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4、C【分析】根据余角和补角的定义,先求出,再求出它的补角即可.【详解】解:∵的余角为,∴,的补角为,故选:C.【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.5、D【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x,则它的余角为(90°-x),补角为(180°-x),依题意得解得x=80°故选D.【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.6、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.7、C【分析】用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).【详解】解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”, 用反证法时应假设结论不成立,即假设a与c不平行(或a与c相交).故答案为:C.【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.8、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.【详解】解:证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴∠4=∠5.∴b∥c.∴应补充∠4=∠5.故选:D.【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.9、D【分析】根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.【详解】∵的补角是125°,∴=180°-125°,∴的余角是90°-(180°-125°)=125°-90°=35°,故选D.【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.10、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.二、填空题1、70︒【分析】如图,由平行线的性质可求得∠1=∠3,由折叠的性质可求得∠4=∠5,再由平行线的性质可求得∠2.【详解】解:如图,∵a∥b,∴∠3=∠1=40°,∠2=∠5,又由折叠的性质可知∠4=∠5,且∠3+∠4+∠5=180°,∴∠5=(180°-∠3)=70°,∴∠2=70°,故答案为:70︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.2、50°【分析】根据两个角互余,则两个角相加之和为90°,进行求解即可.【详解】解:∵∠α与∠β互余,且∠α=40°,∴∠β=90°-∠α=50°,故答案为:50°.【点睛】本题考查了求一个角的余角,熟知两个角互余则它们之和等于90°是解答本题的关键.3、【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】解:=65°14'15″,的余角=90°﹣65°14'15″=24°45'45″.故答案为:24°45'45″.【点睛】本题主要是考查了余角的定义以及角度的运算,熟记互余的两个角之和为90°,是解决本题的关键.4、116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.【详解】解:∵,∠AOC=90°,∴∠BOC=64°,∵∠2+∠BOC=180°,∴∠2=116°.故答案为:116°.【点睛】此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.5、【分析】如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.【详解】解:如图,,,,故答案为:.【点睛】本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.三、解答题1、(1),;(2).【解析】【分析】(1)根据互余的性质求出,根据角平分线的性质求出,结合图形计算即可;(2)根据互余的性质用表示,根据角平分线的性质求出,结合图形列式计算即可.【详解】解:(1)∵与互余,,∴,∵OE平分,∴,∴,∴,;(2)∵,且与互余,∴,∵OE平分,∴,∴,解得:.【点睛】本题考查了余角及角平分线的性质,角的计算,理解两个性质并准确识图,理清图中各角度之间的关系是解题的关键.2、(1);(2)相等,理由见解析;(3)∠AOB越来越大(4)见解析【解析】【分析】(1)根据∠AOC=90°,∠DOC=29°,求出∠AOD的度数,然后即可求出∠AOB的度数;(2)根据直角和等式的性质可得,∠AOD=∠BOC;(3)根据∠AOD+∠DOC+∠DOC+∠BOC=180°,可得∠AOB+∠DOC=180°,进而得到∠DOC变小∠AOB变大,若∠DOC越来越大,则∠AOB越来越小.(4)首先以OE为边,在∠EOF外画∠GOE=90°,再以OF为边在∠EOF外画∠HOF=90°,即可得到∠HOG=∠EOF.【详解】解:(1)因为,∠AOC=∠DOB=90°,∠DOC=29°所以,∠COB=90°﹣29°=61°,所以,∠AOB=90°+61°=151°,(2)相等的角有:∠AOC=∠DOB=90°,∠AOD=∠BOC;因为∠AOD=∠AOC-∠DOC=∠DOB-∠DOC=∠COB所以∠AOD=∠BOC;如果∠DOC≠29°,他们还会相等;(3)因为∠AOB=∠AOC+∠DOB-∠DOC=180°-∠DOC所以当∠DOC越来越小,则∠AOB越来越大;(4)如图,画∠HOF=∠GOE=90°,则∠HOG=∠EOF即,∠HOG为所画的角.【点睛】本题考查了余角和补角,以及角的计算,是基础题,准确识图是解题的关键.3、(1);(2)∠ABC的度数改变,度数为.【解析】【分析】(1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;(2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.【详解】(1)如图1,过点作. ∵,∴,∴.∵平分平分,,∴.∵,∴,∴.(2)的度数改变.画出的图形如图2,过点作. ∵平分,平分,,∴ .∵,∴,∴.∵,∴,∴,∴.【点睛】本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.4、61.5°【解析】【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.5、(1)∠COD=35°;∠EOC=55°;(2)∠COD+∠EOC;理由见解析.【解析】【分析】(1)根据角平分线的定义直接可得∠COD,根据邻补角求得,进而根据角平分线的定义求得;(2)根据平角的定义以及角平分线的定义,可得∠COD+∠EOC=(∠BOC+∠AOC)=90°,即可求得∠COD与∠EOC的数量关系.【详解】解:(1)∵OD平分∠BOC,∠BOC=70°,∴∠COD=∠BOC=35°,∵∠BOC=70°,∴∠AOC=180°-∠BOC=110°,∵OE平分∠AOC,∴∠EOC=∠AOC=55°.(2)∠COD+∠EOC=90°,理由如下:∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC,∠EOC=∠AOC,∴∠COD+∠EOC=(∠BOC+∠AOC)=90°,∴∠COD+∠EOC.【点睛】本题考查了角平分线的定义,求一个角的补角,平角的定义,理解角平分线的意义是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共22页。试卷主要包含了下列命题中,是真命题的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共21页。试卷主要包含了如图,下列命题中,为真命题的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共20页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。