北京课改版第七章 观察、猜想与证明综合与测试同步测试题
展开这是一份北京课改版第七章 观察、猜想与证明综合与测试同步测试题,共21页。试卷主要包含了一个角的补角比这个角的余角大.,如图,直线AB,下列命题是真命题的是,下列命题中,真命题是,直线,下列命题中,是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知和都是直角,图中互补的角有( )对.
A.1 B.2 C.3 D.0
2、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
3、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
4、一个角的补角比这个角的余角大( ).
A.70° B.80° C.90° D.100°
5、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55° B.125° C.65° D.135°
6、下列命题是真命题的是( )
A.等角的余角相等 B.同位角相等
C.互补的角一定是邻补角 D.两个锐角的和是钝角
7、下列命题中,真命题是( )
A.两条直线被第三条直线所截,内错角相等 B.相等的角是对顶角
C.在同一平面内,垂直于同一条直线的两条直线平行 D.同旁内角互补
8、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
9、下列命题中,是真命题的是( )
A.同位角相等 B.同角的余角相等
C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直
10、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是( )
A.152° B.28° C.52° D.90°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、判断正误:
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
(2)如果两个角相等,那么这两个角是对顶角( )
(3)有一条公共边的两个角是邻补角( )
(4)如果两个角是邻补角,那么它们一定互补( )
(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
2、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.
3、一个角的度数是48°37',则这个角的余角的度数为__________.
4、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.
5、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
2、已知:如图,直线a、b、c两两相交,且∠1=2∠3,∠2=86°,求∠4的度数.
3、如图,点O为直线AB上的一点,已知∠1=65°15′,∠2=78°30′,求∠1+∠2﹣∠3的大小.
4、已知:如图,中,点、分别在、上,交于点, ,.
(1)求证:;
(2)若平分,,求的度数.
5、如图,是的平分线,是的平分线.
(1)若,,求的度数;
(2)若与互补,且,求的度数.
---------参考答案-----------
一、单选题
1、B
【分析】
如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.
【详解】
解:如图,延长BO至点E.
∵∠BOD=90°,
∴∠DOE=180°−∠DOB=90°.
∴∠DOE=∠DOB=∠AOC=90°.
∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.
∴∠AOE=∠COD,∠AOD=∠BOC.
∵∠AOE+∠AOB=180°,
∴∠COD+∠AOB=180°.
综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.
故选:B.
【点睛】
本题主要考查补角,熟练掌握补角的定义是解决本题的关键.
2、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
3、C
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
4、C
【分析】
根据互补即两角的和为180°,互余的两角和为90°,设这个角为x,即可求出答案.
【详解】
解:设这个角为x,则这个角的补角为180°-x,这个角的补角为90°-x,
根据题意得:180°-x-(90°-x)=90°,
故选:C.
【点睛】
本题主要考查了余角和补角的概念与性质.互为余角的两角的和为90°,互为补角的两角之和为180°.
5、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
6、A
【分析】
由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.
【详解】
解:等角的余角相等,正确,是真命题,故A符合题意,
两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;
互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;
两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;
故选:A
【点睛】
本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.
7、C
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、错误,当被截的直线平行时形成的同位角才相等;
B、错误,对顶角相等但相等的角不一定是对顶角;
C、正确,必须强调在同一平面内;
D、错误,两直线平行同旁内角才互补.
故选:C.
【点睛】
主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
8、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
9、B
【分析】
利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;
B、同角的余角相等,是真命题,故本选项符合题意;
C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意;
D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.
10、A
【分析】
根据两个角互为补角,它们的和为180°,即可解答.
【详解】
解:∵∠A与∠B互为补角,
∴∠A+∠B=180°,
∵∠A=28°,
∴∠B=152°.
故选:A
【点睛】
本题考查了补角,解决本题的关键是熟记补角的定义.
二、填空题
1、(1)×;(2)×;(3)×;(4)√;(5)×
【分析】
根据对顶角与邻补角的定义与性质分析判断即可求解.
【详解】
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
(2)如果两个角相等,那么这两个角不一定是对顶角,错误;
(3)有一条公共边的两个角不一定是邻补角,错误;
(4)如果两个角是邻补角,那么它们一定互补,正确;
(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
【点睛】
本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
2、48° 132° 48°
【分析】
根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.
【详解】
解:∵ //,∠1=48°,
∴∠2=∠1=48°,
∵ //,∠1=48°,
∴∠4=∠1=48°,
∵ //,
∴∠3+∠4=180°
∴∠3=180°-∠4=180°-48°=132°
故答案为:48°;132°;48°
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
3、41°23'
【分析】
根据余角的概念求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵一个角的度数是48°37',
∴这个角的余角的度数为90°-48°37'=41°23'.
故答案为:41°23'.
【点睛】
此题考查了余角的概念,解题的关键是熟练掌握余角的概念.余角:如果两个角相加等于90°,那么这两个角互为余角.
4、
【分析】
根据,可得,再根据对顶角相等即可求出的度数.
【详解】
解:∵,
∴
∴
∵
∴
故答案为:
【点睛】
本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.
5、70
【分析】
根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.
【详解】
解:∵ABCD,
∴∠C+∠CAB=180°,
∵∠C=40°,
∴∠CAB=180°-40°=140°,
∵AE平分∠CAB,
∴∠EAB=70°,
∵ABCD,
∴∠AEC=∠EAB=70°,
故答案为70.
【点睛】
本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.
三、解答题
1、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
【解析】
【分析】
(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
【详解】
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD
(2)∠BAE+∠MCD=90°;理由如下:
如图,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=∠AEF+∠FEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD=∠MCD,
∴∠BAE+∠MCD=90°.
(3)如图,过点C作CM//PQ,
∴∠PQC=∠MCN,∠QPC=∠PCM,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠PCQ+∠PCM+∠MCN=180°,
∴∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
【点睛】
本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
2、43°
【解析】
【分析】
根据对顶角相等可得,结合已知条件即可求得∠4的度数.
【详解】
解:根据对顶角相等,
∴∠1=∠2=86°.
又∵∠1=2∠3,∴86°=2∠3,∴∠3=43°,
又∠3与∠4对顶角,
所以∠3=∠4=43°.
【点睛】
本题考查了对顶角相等,角度的计算,根据对顶角相等找出图中相等的角是解题的关键.
3、107°30′
【解析】
【分析】
先求出∠1+∠2的和,再根据平角求出∠3,最后计算∠1+∠2﹣∠3即可.
【详解】
解:∵∠1=65°15′,∠2=78°30′,∠1+∠2+∠3=180°,
∠1+∠2=65°15′+78°30′=143°45′,
∴∠3=180°-∠1-∠2=180°-(∠1+∠2)=180°-143°45′=36°15′,
∴∠1+∠2﹣∠3=143°45′-36°15′=107°30′.
【点睛】
本题考查角的单位互化,角的和差计算,平角,掌握角的单位互化方法,角的和差计算法则,平角应用是解题关键.
4、(1)见解析;(2)72°
【解析】
【分析】
(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
【详解】
解:(1)∵,∠2+∠DFE=180°,
∴∠3=∠DFE,
∴EF//AB,
∴∠ADE=∠1,
又∵,
∴∠ADE=∠B,
∴DE//BC,
(2)∵平分,
∴∠ADE=∠EDC,
∵DE//BC,
∴∠ADE=∠B,
∵
∴∠5+∠ADE+∠EDC==180°,
解得:,
∴∠ADC=2∠B=72°,
∵EF//AB,
∴∠2=∠ADC=180°-108°=72°,
【点睛】
本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
5、(1)78°;(2)80°.
【解析】
【分析】
(1)根据角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)结合图形可得,然后将角度代入计算即可;
(2)由互补可得,结合图形可得:,,由角平分线定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得,利用等量代换得出,将已知角度代入求解即可.
【详解】
解:(1)OB是的平分线,且,
OD是的平分线,且,
∴,
,
∴,
∴;
(2)∵与互补,
∴,
由图知:,
,
由角平分线定义知:,
∴,
即,
∵,
∴,
即.
【点睛】
题目主要考查角平分线及互补的定义,角度之间的计算,理解题意,找准角度进行计算是解题关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习,共20页。试卷主要包含了如图,不能推出a∥b的条件是,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共24页。试卷主要包含了若的余角为,则的补角为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共22页。试卷主要包含了下列说法正确的个数是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。