北京课改版七年级下册第八章 因式分解综合与测试课时练习
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了下列因式分解正确的是,把分解因式的结果是.等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解错误的是( )A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)2、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )A. B.C. D.3、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定4、下列从左边到右边的变形,是因式分解的是( )A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z5、下列因式分解正确的是( )A. B.C. D.6、把分解因式的结果是( ).A. B.C. D.7、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)8、下列四个式子从左到右的变形是因式分解的为( )A.(x﹣y)(﹣x﹣y)=y2﹣x2B.a2+2ab+b2﹣1=(a+b)2﹣1C.x4﹣81y4=(x2+9y2)(x+3y)(x﹣3y)D.(a2+2a)2﹣8(a2+2a)+12=(a2+2a)(a2+2a﹣8)+129、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.10、下列各式从左到右的变形属于因式分解的是( )A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3yC.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_______.2、分解因式:=__________.3、填空:x2-2x+__________=(x-__________)2.4、因式分解:5a2﹣45b2=_____.5、若多项式能用完全平方公式进行因式分解,则________.三、解答题(5小题,每小题10分,共计50分)1、因式分解:.2、因式分解:(1)9y2 - 16x2 (2)x2(x﹣y)+9(y﹣x)(3)a 2 -4a+4 (4)-2a3+12a2-18a3、仔细阅读下面例题,解答问题:例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.4、利用因式分解计算:(1)22014﹣22013;(2)(﹣2)101+(﹣2)100.5、将下列多项式进行因式分解:(1);(2). ---------参考答案-----------一、单选题1、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.2、A【解析】【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.3、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.4、C【解析】【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2﹣x=x(x﹣1),属于因式分解,符合题意;D、2yz﹣y2z+z=,原式分解错误,不符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.5、A【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.【详解】解:A、,选项说法正确,符合题意;B、,选项说法错误,不符合题意;C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;D、,选项说法错误,不符合题意;故选A.【点睛】本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.6、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.7、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.8、C【解析】【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.9、C【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误.【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键.10、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.二、填空题1、【解析】【分析】利用十字相乘法分解因式即可得.【详解】解:因为,且是的一次项的系数,所以,故答案为:.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键.2、##()(2- x)(2+x)【解析】【分析】观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可.【详解】解:故答案为:【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.3、 1 1【解析】【分析】根据配方法填空即可,加上一次项系数一半的平方.【详解】故答案为:1,1【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键.4、【解析】【分析】原式提取公因式5,再利用平方差公式分解即可.【详解】解:原式=5(a2﹣9b2)=5(a+3b)(a﹣3b).故答案为:5(a+3b)(a﹣3b).【点睛】此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键.5、9或-7##-7或9【解析】【分析】利用完全平方公式的结构特征判断即可求出m的值.【详解】解:∵多项式x2-(m-1)x+16能用完全平方公式进行因式分解,∴m-1=±8,解得:m=9或m=-7,故答案为:9或-7【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.三、解答题1、(5+m)(5﹣m)【解析】【分析】用平方差公式分解因式.【详解】解:原式=(5+m)(5﹣m).【点睛】本题考查利用平方差公式分解因式,是重要考点,掌握相关知识是解题关键.2、(1);(2);(3);(4)【解析】【分析】(1)原式直接用平方差公式进行因式分解即可;(2)原式先提取公因式(x-y)再运用平方差公式进行因式分解即可;(3)原式直接运用完全平方公式进行因式分解即可;(4)原式先提取公因式-2a,再运用完全平方公式进行因式分解即可【详解】解:(1)9y2 - 16x2= = (2)x2(x﹣y)+9(y﹣x)= x2(x﹣y)-9(x﹣y)= = (3)a 2 -4a+4= = (4)-2a3+12a2-18a= =【点睛】本题主要考查了因式分解,熟练掌握乘法公式是解答本题的关键3、另一个因式为(2x+13),k的值为65.【解析】【分析】设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.【详解】解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)则2x2+3x﹣k=2x2+(a﹣10)x﹣5a∴,解得:a=13,k=65.故另一个因式为(2x+13),k的值为65.【点睛】此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.4、(1)22013;(2)﹣2100【解析】【分析】(1)根据22014=2×22013进行解答即可;(2)根据(﹣2)101=(﹣2)×(﹣2)100进行解答.【详解】解:(1)22014﹣22013=2×22013﹣22013=(2-1)×22013=22013(2)(﹣2)101+(﹣2)100=(﹣2)×(﹣2)100+(﹣2)100=(-2+1)×(﹣2)100=﹣2100.【点睛】本题主要考查因式分解,熟练掌握提公因式是解题的关键.5、(1);(2).【解析】【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可.【详解】解:(1)原式;(2)原式.【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试当堂达标检测题,共16页。试卷主要包含了因式分解,已知的值为5,那么代数式的值是,下列因式分解正确的是,已知c<a<b<0,若M=|a,若x2+ax+9=等内容,欢迎下载使用。
这是一份初中第八章 因式分解综合与测试课后练习题,共15页。试卷主要包含了下列各式的因式分解中正确的是,若x2+ax+9=等内容,欢迎下载使用。
这是一份2021学年第八章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列各因式分解正确的是,下列多项式因式分解正确的是,下列分解因式正确的是等内容,欢迎下载使用。