北京课改版七年级下册第八章 因式分解综合与测试课后测评
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列各因式分解正确的是,下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,不能用平方差公式分解因式的是( )A. B. C. D.2、下列多项式因式分解正确的是( )A. B.C. D.3、已知a+b=2,a-b=3,则等于( )A.5 B.6 C.1 D.4、下列各因式分解正确的是( )A. B.C. D.5、下列因式分解正确的是( )A. B.C. D.6、下列多项式中,能用平方差公式分解因式的是( )A.a2-1 B.-a2-1 C.a2+1 D.a2+a7、下列等式从左到右的变形,属于因式分解的是( )A. B.C. D.8、下列各式中,能用完全平方公式分解因式的是( )A. B.C. D. 9、下列由左到右的变形,属于因式分解的是( )A. B.C. D.10、下列各式中从左到右的变形,是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:__.2、分解因式:2x2-4x=_____.3、分解因式_______.4、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为_________.5、计算下列各题:(1)______; (2)______; (3)______; (4)______.三、解答题(5小题,每小题10分,共计50分)1、因式分解:.2、因式分解:①3x-12x3;②-2a3+12a2-18a3、分解因式(1) (2)(3)4、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法 次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)结果是 .5、因式分解(1)n2(m﹣2)﹣n(2﹣m)(2)(a2+4)2﹣16a2. ---------参考答案-----------一、单选题1、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.【详解】解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.故选B.【点睛】本题考查了平方差公式分解因式.关键要掌握平方差公式.2、D【解析】【分析】根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D.【详解】解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;B. ,因式分解不彻底,故选项B不正确;C. 因式中出现分式,故选项C不正确;D. 根据完全平方公式因式分解,故选项D正确.故选择D.【点睛】本题考查因式分解,掌握因式分解的方法与要求,注意因式分解是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式.3、B【解析】【分析】根据平方差公式因式分解即可求解【详解】∵a+b=2,a-b=3,∴故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.4、D【解析】【分析】利用提公因式法、公式法逐项进行因式分解即可.【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.5、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、A【解析】【分析】直接利用平方差公式:,分别判断得出答案;【详解】A、a2-1=(a+1) (a-1),正确; B、-a2-1=-( a2+1 ) ,错误; C、 a2+1,不能分解因式,错误; D、 a2+a=a(a+1) ,错误; 故答案为:A【点睛】本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.7、B【解析】【分析】根据因式分解的定义直接判断即可.【详解】解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8、D【解析】【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.9、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.10、B【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.二、填空题1、【解析】【分析】将当作整体,对式子先进行配方,然后利用平方差公式求解即可.【详解】解:原式.故答案是:.【点睛】此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.2、##【解析】【分析】根据提公因式法因式分解即可【详解】解:2x2-4x=故答案为:【点睛】本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.3、【解析】【分析】把原式化为,再利用完全平方公式分解因式即可.【详解】解: 故答案为:【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.4、【解析】【分析】根据题意可知a、b是相互独立的,在因式分解中b决定常数项,a决定一次项的系数,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值,代入原多项式进行因式分解.【详解】解:∵分解因式x2+ax+b时,甲看错了b,分解结果为,∴在=x2+6x+8中,a=6是正确的,∵分解因式x2+ax+b时,乙看错了a,分解结果为,∴在=x2+10x+9中,b=9是正确的,∴x2+ax+b=x2+6x+9=.故答案为:【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.5、 【解析】【分析】(1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可.【详解】解:(1); (2); (3); (4).故答案是:(1);(2);(3);(4).【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、【解析】【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.【详解】解:原式.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、①;②.【解析】【分析】①先提取公因式,再利用平方差公式因式分解;②先提取公因式,再利用完全平方公式因式分解.【详解】解:①原式==;②原式==.【点睛】本题考查综合利用提公因式法和公式法因式分解.一般能提公因式先提取公因式,再考虑能否运用公式法因式分解.3、(1);(2);(3)【解析】【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式先利用完全平方公式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可.【详解】解:(1)a;(2);(3)【点睛】本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键.4、(1)提公因式法; 2;(2)2021;(x+1)2022;(3)(1+x)n+1.【解析】【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;(3)结合(1)中解题方法得出答案.【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.故答案为:(1+x)n+1.【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键.5、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可.【详解】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.
相关试卷
这是一份2021学年第八章 因式分解综合与测试综合训练题
这是一份2020-2021学年第八章 因式分解综合与测试达标测试,共17页。试卷主要包含了下列分解因式正确的是,若x2+ax+9=,下列运算错误的是,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习,共18页。试卷主要包含了下列分解因式结果正确的是,把分解因式的结果是.,下列因式分解正确的是,多项式分解因式的结果是等内容,欢迎下载使用。