数学七年级下册第八章 因式分解综合与测试课时作业
展开京改版七年级数学下册第八章因式分解专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列四个式子从左到右的变形是因式分解的为( )
A.(x﹣y)(﹣x﹣y)=y2﹣x2
B.a2+2ab+b2﹣1=(a+b)2﹣1
C.x4﹣81y4=(x2+9y2)(x+3y)(x﹣3y)
D.(a2+2a)2﹣8(a2+2a)+12=(a2+2a)(a2+2a﹣8)+12
2、已知a2-2a-1=0,则a4-2a3-2a+1等于( )
A.0 B.1 C.2 D.3
3、下列各式从左到右的变形中,是因式分解的是( )
A. B.
C. D.
4、下列多项式因式分解正确的是( )
A. B.
C. D.
5、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
6、下列各式中从左到右的变形中,是因式分解的是( )
A. B.
C. D.
7、下列因式分解正确的是( ).
A. B.
C. D.
8、下列各式从左到右的变形属于因式分解的是( )
A. B.
C. D.
9、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
10、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )
A.an﹣1 B.2an C.2an﹣1 D.2an+1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法等,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.例如,分组分解法: .仔细阅读以上内容,解决问题:已知:a、b、c为的三条边,,则的周长______.
2、因式分解:(x2+y2)2﹣4x2y2=________
3、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.
4、当x=___时,x2﹣2x+1取得最小值.
5、分解因式:a3﹣2a2b+ab2=___.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1);
(2).
2、(1)计算:(x+2)(4x﹣1)﹣(2x﹣1)2;
(2)因式分解:a3b﹣2a2b2+ab3.
3、因式分解:
4、把下列各式因式分解:
(1)
(2)
5、
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
【详解】
解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;
C选项,符合因式分解的定义,符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.
2、C
【解析】
【分析】
由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.
【详解】
解:∵a2﹣2a﹣1=0,
∴a2﹣2a=1,
∴a4﹣2a3﹣2a+1
=a2(a2﹣2a)﹣2a+1
=a2﹣2a+1
=1+1
=2.
故选:C.
【点睛】
此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.
3、D
【解析】
【分析】
因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
不是化为整式的积的形式,故B不符合题意;
不是化为整式的积的形式,故C不符合题意;
是因式分解,故D符合题意;
故选D
【点睛】
本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.
4、D
【解析】
【分析】
根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D.
【详解】
解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;
B. ,因式分解不彻底,故选项B不正确;
C. 因式中出现分式,故选项C不正确;
D. 根据完全平方公式因式分解,故选项D正确.
故选择D.
【点睛】
本题考查因式分解,掌握因式分解的方法与要求,注意因式分解是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式.
5、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
6、C
【解析】
【分析】
由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
【详解】
解:A、,是整式的乘法,不是因式分解故A错误;
B、,是整式不是因式分解;
C、,是因式分解;
D、右边不是整式的积的形式(含有分式),不是因式分解;
故选:C.
【点睛】
本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.
7、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
8、B
【解析】
【分析】
直接利用因式分解的定义分析得出答案.
【详解】
A. 化为分式的积,不是因式分解,故该选项不符合题意;
B. ,是因式分解,故该选项符合题意;
C. ,不是积的形式,故该选项不符合题意;
D. ,不是积的形式,故该选项不符合题意;
故选B
【点睛】
本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.
9、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
10、C
【解析】
【分析】
根据提取公因式的方法计算即可;
【详解】
原式,
∴2an﹣1﹣4an+1的公因式是,即;
故选C.
【点睛】
本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.
二、填空题
1、7
【解析】
【分析】
根据拆项法将多项式变形为完全平方式的性质,利用平方的非负性求出a、b、c的值即可.
【详解】
解:,
,
,
∴,
解得,
∴的周长为,
故答案为:7.
【点睛】
此题考查多项式分解因式的方法,掌握分解因式的方法及能依据多项式的特点选择恰当的解法是解题的关键.
2、(x-y)2(x+y)2
【解析】
【分析】
根据平方差公式和完全平方公式因式分解即可;
【详解】
原式,
;
故答案是:.
【点睛】
本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键.
3、﹣2ab(2a﹣b)2
【解析】
【分析】
先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:原式=﹣2ab(4a2﹣4ab+b2)
=﹣2ab(2a﹣b)2,
故答案为:﹣2ab(2a﹣b)2.
【点睛】
本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.
4、1
【解析】
【分析】
先根据完全平方公式配方,再根据偶次方的非负性即可求解.
【详解】
解:∵,
∴当x=1时,x2﹣2x+1取得最小值.
故答案为:1.
【点睛】
本题考查了完全平方公式,解题的关键是掌握完全平方公式.
5、
【解析】
【分析】
先提取公因式a,再利用完全平方公式因式分解.
【详解】
解:,
故答案为:.
【点睛】
本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)提取m,后用完全平方公式分解;
(2)提取a-b,后用平方差公式分解.
【详解】
解:(1)原式
.
(2)原式
.
【点睛】
本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键.
2、(1)11x-3;(2)ab(a-b)2
【解析】
【分析】
(1)先按照多项式乘以多项式的法则,完全平方公式进行整式的乘法运算,再合并同类项即可;
(2)先提取公因式 再按照完全平方公式分解因式即可.
【详解】
解:(1)(x+2)(4x﹣1)﹣(2x﹣1)2
(2)a3b﹣2a2b2+ab3
【点睛】
本题考查的是整式的乘法运算,利用完全平方公式进行简便运算,同时考查综合提公因式与公式法分解因式,掌握“完全平方公式的应用”是解本题的关键.
3、
【解析】
【分析】
把原式分组成,然后利用完全平方公式和平方差公式化简即可.
【详解】
解:原式
【点睛】
本题考查了利用完全平方公式和平方差公式因式分解,把原式有3项适合完全平方的放在一起进行因式分解是解答此题的关键.
4、(1);(2)
【解析】
【分析】
(1)先提取公因式 再按照完全平方公式分解因式即可;
(2)先利用平方差公式分解,再利用平方差公式进行第二次分解,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键,一定要注意分解因式要彻底.
5、
【解析】
【分析】
根据平方差公式求解即可.
【详解】
解:
【点睛】
此题考查了平方差公式的应用,涉及了整式加减运算,解题的关键是掌握平方差公式,利用整体思想进行求解.
初中第八章 因式分解综合与测试课后练习题: 这是一份初中第八章 因式分解综合与测试课后练习题,共15页。试卷主要包含了下列各式的因式分解中正确的是,若x2+ax+9=等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,当n为自然数时,等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试课后测评: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列各因式分解正确的是,下列因式分解正确的是等内容,欢迎下载使用。