北京课改版七年级下册第八章 因式分解综合与测试单元测试课堂检测
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试单元测试课堂检测,共15页。试卷主要包含了下列因式分解正确的是,多项式与的公因式是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形属于因式分解的是( )A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3yC.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)2、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)3、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个4、下列因式分解正确的是( )A. B.C. D.5、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )A.2 B.3 C.4 D.56、多项式与的公因式是( )A. B. C. D.7、下列各式从左到右进行因式分解正确的是( )A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)8、关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是( )A.﹣6 B.±6 C.12 D.±129、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.10、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知实数a和b适合a2b2+a2+b2+1=4ab,则a+b=___.2、在实数范围内分解因式:x2﹣3xy﹣y2=___.3、分解因式:mx2﹣4mx+4m=________.4、因式分解:__.5、分解因式:3ab﹣6a2=__________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:x3y﹣2x2y2+xy3.2、因式分解:.3、分解因式:(1) (2)4、分解因式(1) (2)(3)5、因式分解(1)(2)(x-1)(x-3)-8 ---------参考答案-----------一、单选题1、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.2、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.3、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.4、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、C【解析】【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.6、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得.【详解】解:,,则多项式与的公因式是,故选:B.【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键.7、B【解析】【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a2﹣4a+1=,故该选项不符合题意;B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.8、D【解析】【分析】利用完全平方公式的结构特征判断即可求出a的值.【详解】解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴ax=±12x.故选:D.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.9、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、C【解析】【分析】根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.【详解】解:A、,则原等式不成立,此项不符题意;B、等式的右边不是乘积的形式,则此项不符题意;C、是因式分解,此项符合题意;D、等式右边中的不是整式,则此项不符题意;故选:C.【点睛】本题考查了因式分解的定义,熟记定义是解题关键.二、填空题1、2或-2##-2或2【解析】【分析】先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.【详解】解:∵a2b2+a2+b2+1=4ab,∴a2b2-2ab+1+a2-2ab+b2=0,∴(ab-1)2+(a-b)2=0,又∵(ab-1)2≥0,(a-b)2≥0,∴ab-1=0,a-b=0,∴ab=1,a=b,∴a2=1,∴a=±1,∴a=b=1或a=b=-1,当a=b=1时,a+b=2;当a=b=-1时,a+b=-2,故答案为:2或-2.【点睛】此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.2、【解析】【分析】先利用配方法,再利用平方差公式即可得.【详解】解:===.故答案为:.【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.3、m(x-2)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=m(x2-4x+4)=m(x-2)2,故答案为:.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、【解析】【分析】将当作整体,对式子先进行配方,然后利用平方差公式求解即可.【详解】解:原式.故答案是:.【点睛】此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.5、【解析】【分析】利用提公因式法进行因式分解即可得.【详解】解:原式,故答案为:.【点睛】本题考查了因式分解(提公因式法),熟练掌握因式分解的各方法是解题关键.三、解答题1、【解析】【分析】先提取公因式,再运用完全平方公式分解即可.【详解】解:x3y﹣2x2y2+xy3==.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:分解要彻底.2、【解析】【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.【详解】解:原式.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.3、(1);(2)【解析】【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可.【详解】解:(1);(2)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、(1);(2);(3)【解析】【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式先利用完全平方公式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可.【详解】解:(1)a;(2);(3)【点睛】本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键.5、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解.【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x-1)(x-3)-8=x2-4x+3-8=x2-4x-5=(x-5)(x+1).【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.
相关试卷
这是一份数学七年级下册第八章 因式分解综合与测试课后复习题,共17页。试卷主要包含了把分解因式的结果是.等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共15页。试卷主要包含了下列因式分解正确的是,下列运算错误的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共15页。试卷主要包含了下列因式分解正确的是,下列因式分解错误的是,下列分解因式结果正确的是等内容,欢迎下载使用。