初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习
展开
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共15页。试卷主要包含了下列因式分解正确的是,下列因式分解错误的是,下列分解因式结果正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式能用完全平方公式进行因式分解的是( )A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-92、下列各式能用平方差公式进行分解因式的是( )A.x2-1 B.x2+2x-1 C.x2+x+1 D.x2+4x+43、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个4、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学5、下列因式分解正确的是( )A. B.C. D.6、下列多项式中,能用平方差公式分解因式的是( )A.a2-1 B.-a2-1 C.a2+1 D.a2+a7、下列各式由左边到右边的变形中,是因式分解的为( )A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x8、下列因式分解错误的是( )A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)9、下列分解因式结果正确的是( )A.a2b+7ab﹣b=b(a2+7a) B.3x2y﹣3xy+6y=3y(x2﹣x﹣2)C.8xyz﹣6x2y2=2xyz(4﹣3xy) D.﹣2a2+4ab﹣6ac=﹣2a(a﹣2b+3c)10、下列因式分解中,正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把多项式因式分解的结果是_______.2、分解因式__________.3、因式分解:______.4、将4a2﹣8ab+4b2因式分解后的结果为___.5、分解因式:(a+b)2﹣(a+b)=_______.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(x2+9)2﹣36x2.2、分解因式:(1);(2)3、先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣6x﹣7;(2)分解因式:a2+4ab﹣5b24、因式分解:(1). (2).5、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法 次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)结果是 . ---------参考答案-----------一、单选题1、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.2、A【解析】【分析】两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论.【详解】A.能变形为x2﹣12,符合平方差公式的特点,能用平方差公式分解因式;B.多项式含有三项,不能用平方差公式分解因式;C.多项式含有三项,不能用平方差公式分解因式;D.多项式含有三项,不能用平方差公式分解因式.故选:A.【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.3、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.4、C【解析】【分析】利用平方差公式,将多项式进行因式分解,即可求解.【详解】解:∵、、、依次对应的字为:科、爱、我、理,∴其结果呈现的密码信息可能是我爱理科.故选:C【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.5、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、A【解析】【分析】直接利用平方差公式:,分别判断得出答案;【详解】A、a2-1=(a+1) (a-1),正确; B、-a2-1=-( a2+1 ) ,错误; C、 a2+1,不能分解因式,错误; D、 a2+a=a(a+1) ,错误; 故答案为:A【点睛】本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.7、B【解析】【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.【详解】解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.故选B.【点睛】本题考查因式分解,掌握因式分解的定义是解题关键.8、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.9、D【解析】【分析】分别对四个选项进行因式分解,然后进行判断即可.【详解】解:A、原式=b(a2+7a-1),故不符合题意;B、原式=3y(x2﹣x+2),故不符合题意;C、原式=2xy(4z﹣3xy),故不符合题意;D、原式=﹣2a(a﹣2b+3c),故符合题意.故选D.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.10、D【解析】【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.二、填空题1、【解析】【分析】先提取公因式,在利用公式法计算即可;【详解】原式;故答案是:.【点睛】本题主要考查了利用提取公因式法和公式法进行因式分解,准确利用公式求解是解题的关键.2、【解析】【分析】直接利用提公因式法分解因式即可.【详解】解:.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.3、【解析】【分析】先将原式变形为,再利用提公因式法分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.4、【解析】【分析】先提取公因式4,再利用完全平方式即可求出结果.【详解】.故答案为:【点睛】本题考查因式分解.掌握提公因式和公式法进行因式分解是解答本题的关键.5、##【解析】【分析】直接找出公因式(a+b),进而分解因式得出答案.【详解】解:(a+b)2﹣(a+b)=(a+b)(a+b﹣1).故答案为:(a+b)(a+b﹣1).【点睛】此题主要考查因式分解,解题的关键是熟知提公因式法的运用.三、解答题1、【解析】【分析】利用平方差公式和完全平方公式分解因式即可.【详解】解: .【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.2、(1);(2)【解析】【分析】(1)利用完全平方公式进行分解因式,即可解答;(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可.【详解】(1)原式,,;(2)原式,,,,.【点睛】本题考查了因式分解,解决本题的关键是熟记因式分解的方法.3、(1)(x+1)(x-7);(2)(a+5b)( a-b)【解析】【分析】(1)仿照例题方法分解因式即可;(2)仿照例题方法分解因式即可;【详解】解:(1)x2﹣6x﹣7= x2﹣6x+9-16=(x-3)2-42=(x-3+4)(x-3-4)=(x+1)(x-7);(2)a2+4ab﹣5b2= a2+4ab+4b2﹣9b2=(a+2b)2-(3b)2=(a+2b +3b)(a+2b-3b)=(a+5b)( a-b).【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键.4、(1);(2)【解析】【分析】(1)先提取y,再利用完全平方公式即可求解. (2)先提取,再利用平方差公式即可求解.【详解】(1)原式;(2)原式.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.5、(1)提公因式法; 2;(2)2021;(x+1)2022;(3)(1+x)n+1.【解析】【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;(3)结合(1)中解题方法得出答案.【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.故答案为:(1+x)n+1.【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试习题,共16页。试卷主要包含了如图,长与宽分别为a,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时作业,共17页。试卷主要包含了下列因式分解正确的是,已知,,那么的值为,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共16页。试卷主要包含了多项式分解因式的结果是等内容,欢迎下载使用。