数学七年级下册第八章 因式分解综合与测试课后复习题
展开
这是一份数学七年级下册第八章 因式分解综合与测试课后复习题,共17页。试卷主要包含了把分解因式的结果是.等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左至右是因式分解的是( )A. B.C. D.2、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.3、如图,边长为a,b的长方形的周长为18,面积为12,则a3b+ab3的值为( )A.216 B.108C.140 D.6844、下列各式中,能用完全平方公式分解因式的是( )A. B.C. D. 5、下列等式从左到右的变形,属于因式分解的是( )A. B.C. D.6、把分解因式的结果是( ).A. B.C. D.7、下列多项式中,不能用公式法因式分解的是( )A. B. C. D.8、下列各式从左到右的变形中,是因式分解的是( )A. B.C. D.9、下列等式中,从左到右是因式分解的是( )A. B.C. D.10、下列由左到右的变形,是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解: _______________________.2、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.3、分解因式_________.4、分解因式:______.5、分解因式:12a2b﹣9ac=___.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1);(2)2、因式分解(1)n2(m﹣2)﹣n(2﹣m)(2)(a2+4)2﹣16a2.3、因式分解(1); (2).4、因式分解:(1)18x-2y (2)a3 b+2a2 b2+ab3 .5、分解因式:(1)ab2﹣a;(2)(a2+1)2﹣4a2.(3)4xy2﹣4x2y﹣y3;(4)x2﹣y2﹣ax﹣ay. ---------参考答案-----------一、单选题1、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.3、D【解析】【分析】根据长方形的周长可知,由长方形的面积,可得,将代数式a3b+ab3因式分解,进而代入代数式求值即可.【详解】边长为a,b的长方形的周长为18,面积为12,,,故选D【点睛】本题考查了因式分解,代数式求值,整体代入是解题的关键.4、D【解析】【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.5、B【解析】【分析】根据因式分解的定义直接判断即可.【详解】解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.7、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.8、D【解析】【分析】因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;不是化为整式的积的形式,故B不符合题意;不是化为整式的积的形式,故C不符合题意;是因式分解,故D符合题意;故选D【点睛】本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.9、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.10、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案.【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.二、填空题1、【解析】【分析】根据提取公因式和平方差公式进行分解即可;【详解】原式;故答案是:.【点睛】本题主要考查了利用提取公因式和平方差公式因式分解,准确求解是解题的关键.2、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案.【详解】解:∵要使得能用完全平方公式分解因式,∴应满足,∵,∴,故答案为:.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.3、【解析】【分析】直接提取公因式m,进而分解因式得出答案.【详解】解:=m(m+6).故答案为:m(m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.4、【解析】【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.5、【解析】【分析】根据提公因式法分解因式求解即可.【详解】解:12a2b﹣9ac.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.三、解答题1、(1);(2)【解析】【分析】(1)利用完全平方公式进行分解因式,即可解答;(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可.【详解】(1)原式,,;(2)原式,,,,.【点睛】本题考查了因式分解,解决本题的关键是熟记因式分解的方法.2、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可.【详解】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.3、(1)2ab(2a-5b)2;(2)(a-b)(x+3)(x-3)【解析】【分析】(1)先提取公因式,然后利用完全平方公式分解因式即可;(2)先提取公因式,然后利用平方差公式分解因式即可.【详解】解:(1);(2).【点睛】本题主要考查了因式分解,熟练掌握因式分解的方法是解题的关键.4、(1)2(3x+y)(3x-y);(2)ab(a+b)2【解析】【分析】(1)先提取公因式“2”,然后利用平方差公式分解因式即可;(2)先提取公因式“”,然后利用完全平方公式分解因式即可;【详解】解:(1) ;(2).【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.5、(1)a(b+1)(b﹣1);(2)﹣y(2x﹣y)2;(3)(a+1)2(a﹣1)2;(4)(x+y)(x﹣y﹣a)【解析】【分析】(1)先提取公因式,再用平方差公式即可;(2)先利用平方差公式,再利用完全平方公式即可;(3)先提取公因式,再利用完全平方公式即可;(4)先利用平方差公式,再提取公因式即可.【详解】解:(1)ab2﹣a, =a(b2﹣1) , =a(b+1)(b﹣1); (2)(a2+1)2﹣4a2 ,=(a2+1+2a)(a2+1﹣2a) , =(a+1)2(a﹣1)2 ;(3)4xy2﹣4x2y﹣y3,=﹣y(y2+4x2﹣4xy),=﹣y(2x﹣y)2;(4) x2﹣y2﹣ax﹣ay,=(x+y)(x﹣y)﹣a(x+y),=(x+y)(x﹣y﹣a).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了多项式分解因式的结果是等内容,欢迎下载使用。
这是一份2021学年第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列多项式因式分解正确的是,能利用进行因式分解的是,已知,,那么的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共15页。试卷主要包含了下列分解因式结果正确的是,下列各因式分解正确的是等内容,欢迎下载使用。