北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步测试题
展开七年级数学下册第四章一元一次不等式和一元一次不等式组同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知关于的不等式组的整数解共有个,则的取值范围是( )
A. B. C. D.
2、已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为( )
A.0<m<2 B.0≤m<2 C.0<m≤2 D.0≤m≤2
3、不等式2x﹣1<3的解集在数轴上表示为( )
A. B.
C. D.
4、如图,数轴上表示的解集是( )
A.﹣3<x≤2 B.﹣3≤x<2 C.x>﹣3 D.x≤2
5、如图,下列结论正确的是( )
A.c>a>b B. C.|a|<|b| D.abc>0
6、下列式子:①5<7;②2x>3;③y≠0;④x≥5;⑤2a+l;⑥;⑦x=1.其中是不等式的有( )
A.3个 B.4个 C.5个 D.6个
7、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )
A.-3 B.3 C.-4 D.4
8、如果a<b,c<0,那么下列不等式成立的是( )
A.a+c<b B.a﹣c>b﹣c
C.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)
9、对不等式进行变形,结果正确的是( )
A. B. C. D.
10、把不等式组的解集在数轴上表示,正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式的解集是________.
2、解不等式:x﹣3<2x的解集是 ___.
3、当x_________时,代数式的值不大于x+1的值.
4、已知关于x的一元一次不等式的解集为,那么关于y的一元一次不等式的解集为___________.
5、如果代数式x+7的值不小于零,那么x的取值范围是____.
三、解答题(5小题,每小题10分,共计50分)
1、阅读下面信息:
①数轴上两点M、N表示数分别为,那么点M与点N之间的距离记为,且.
②当数轴上三点A、B、C满足时,则称点C是“A对B的k相关点”.例如,当点A、B、C表示的数分别为0,1,2时,,所以C是“A对B的2相关点”.
根据以上信息,回答下列问题:
已知点A、B在数轴上表示的数分别为5和-4,动点P在数轴上表示的数为x:
(1)若点P是“A对B的2相关点”,则x= ;
(2)若x满足,且点P是“A对B的k相关点”,则k的最大值是 ;最小值是 ;
(3)若动点P从A点出发以每秒2个单位的速度向左运动,同时动点Q从B点出发以每秒1个单位的速度向右运动,运动t秒时,点Q恰好是“P对A的2相关点”,求t的值.
2、解不等式(组):
(1) ;
(2)
3、求不等式64-11x>4的正整数解.
4、某商场同时购进甲、乙、丙三种商品共100件,总进价为6800元,其每件的进价和售价如下表:
商品名称 | 甲 | 乙 | 丙 |
进价(元/件) | 40 | 70 | 90 |
售价(元/件) | 60 | 100 | 130 |
设甲种商品购进x件,乙种商品购进y件.
(1)商场要求购进的乙种商品数量不超过甲种商品数量,求甲种商品至少购进多少件?
(2)若销售完这些商品获得的最大利润是3100元,求甲种商品最多购进多少件?
5、解不等式组,并把解集表示在数轴上.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定的范围.
【详解】
解:
解不等式①得:x,
解不等式②得:x<,
∴不等式组的解集是<x<,
∵原不等式组的整数解有3个为1,0,-1,
∴-2≤<-1.
故选择:A.
【点睛】
本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.
2、B
【解析】
【分析】
由2x-m>4得x>,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出≥2、<3,解之即可得出答案.
【详解】
解:由2x-m>4得x>,
∵x=2不是不等式2x-m>4的整数解,
∴≥2,
解得m≥0;
∵x=3是关于x的不等式2x-m>4的一个整数解,
∴<3,
解得m<2,
∴m的取值范围为0≤m<2,
故选:B.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式.
3、D
【解析】
【分析】
先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.
【详解】
解:由2x﹣1<3得:x<2,
则不等式2x﹣1<3的解集在数轴上表示为
,
故选:D.
【点睛】
本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.
4、A
【解析】
【分析】
根据求不等式组的解集的表示方法,可得答案.
【详解】
解:由图可得,x>﹣3且x≤2
∴在数轴上表示的解集是﹣3<x≤2,
故选A.
【点睛】
本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.
5、B
【解析】
【分析】
根据数轴可得:再依次对选项进行判断.
【详解】
解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,
即可得:,
A、由,得,故选项错误,不符合题意;
B、,根据不等式的性质可得:,故选项正确,符合题意;
C、,可得,故选项错误,不符合题意;
D、,故,故选项错误,不符合题意;
故选:B.
【点睛】
本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出.
6、C
【解析】
【分析】
主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.
【详解】
解:①②③④⑥均为不等式共5个.
故选:C
【点睛】
本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.
7、A
【解析】
【分析】
先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解.
【详解】
解:由关于x的不等式组解得
∵关于x的不等式组有且只有3个奇数解
∴,解得
关于y的方程3y+6a=22-y,解得
∵关于y的方程3y+6a=22-y的解为非负整数
∴,且为整数
解得且为整数
又∵,且为整数
∴符合条件的有、、
符合条件的所有整数a的积为
故选:A
【点睛】
本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.
8、A
【解析】
【分析】
根据不等式的性质,逐项判断即可求解.
【详解】
解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.
B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.
C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.
D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.
故选:A
【点睛】
本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
9、D
【解析】
【分析】
根据不等式的基本性质进行逐一判断即可得解.
【详解】
A.不等式两边同时减b得,故选项A错误;
B.不等式两边同时减2得,故选项B错误;
C.不等式两边同时乘2得,故选项C错误;
D.不等式两边同时乘得,不等式两边再同时加1得,故选项D准确.
故选:D.
【点睛】
本题主要考查了不等式的基本性质,注意不等式两边都加上或减去一个数或整式,不等号方向不变,不等式两边同时乘或除以一个正数,不等号的方向不变,不等式两边同时乘或除以一个负数,要改变不等号的方向.
10、D
【解析】
【分析】
先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.
【详解】
解:,
解不等式②,得: ,
所以不等式组的解集为
把不等式组的解集在数轴上表示出来为:
故选:D
【点睛】
本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.
二、填空题
1、
【解析】
【分析】
移项、合并同类项、系数化为1即可求解.
【详解】
解:,
,
,
即,
故答案为:.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练掌握不等式的性质.
2、.
【解析】
【分析】
先移项,然后系数化为1,即可求出不等式的解集.
【详解】
解:,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键.
3、≥-2
【解析】
【分析】
先根据题意列出关于x的不等式,再根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.
【详解】
解:根据题意,得:≤x+1,
去分母,得:1+2x≤3x+3,
移项,得:2x-3x≤3-1,
合并同类项,得:-x≤2,
系数化为1,得:x≥-2,
故答案为:≥-2.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
4、
【解析】
【分析】
设则化为:整理可得:,从而可得的解集是不等式的解集,从而可得答案.
【详解】
解: 关于x的一元一次不等式的解集为,
设
则化为:
两边都乘以得: 即
的解集为:的解集,
故答案为:
【点睛】
本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.
5、.
【解析】
【分析】
根据题意列不等式求解.
【详解】
根据题意,得:x+7≥0,
移项,得:x≥﹣7,
系数化为1,得:,
故答案为:.
【点睛】
此题考查不等式的实际应用,正确理解题中的数量关系列出不等式解答是解题的关键.
三、解答题
1、(1)或;(2)8,;(3).
【解析】
【分析】
(1)根据“相关点”的定义建立方程,解方程即可得;
(2)先求出的取值范围,再根据“相关点”的定义,将用含的式子表示出来,由此可得一个不等式组,解不等式组即可得;
(3)先根据数轴的定义分别求出点所表示的数,从而可得的值,再根据“相关点”的定义建立方程,解方程即可得.
【详解】
解:(1)由题意得:,
点是“对的2相关点”,
,即,
化简得:或,
解得或,
故答案为:或;
(2),且,
,
,
点是“对的相关点”,
,即,
解得,
,即,
,
又,
,
解得,
则的最大值是8,最小值是,
故答案为:8,;
(3)运动秒后,点表示的数为,点表示的数为,
则,
点恰好是“对的2相关点,
,即,
化简得:或,
解得(舍去)或,
故的值为.
【点睛】
本题考查了数轴、一元一次方程的应用、一元一次不等式组的应用,正确理解“相关点”的定义是解题关键.
2、(1)x>1.5;(2)-1≤x<3
【解析】
【分析】
(1)根据移项、合并同类项、系数化为1的步骤可得x的范围;
(2)首先求出两个不等式的解集,然后取其公共部分即为不等式组的解集.
【详解】
(1)解:5x-2>3x+1,
移项得:5x-3x>1+2,
合并同类项得:2x>3,
系数化为1得:x>1.5;
(2)解: 解不等式2x+5≤3(x+2),得x≥-1,
解不等式2x-<1,得x<3,
∴不等式组的解集为-1≤x<3.
【点睛】
此题考查了解一元一次不等式,解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式,解一元一次不等式组的方法.
3、1,2,3,4,5
【解析】
【分析】
先求出不等式的解集,再求出不等式的正整数解即可.
【详解】
解:移项得:-11x>4-64,
合并同类项得:-11x>-60,
∴不等式的解集为x<,
∴正整数解为1,2,3,4,5.
【点睛】
本题考查了解一元一次不等式和不等式的整数解,能求出不等式的解集是解此题的关键.
4、(1)甲种商品至少购进32件;(2)甲种商品最多购进40件.
【解析】
【分析】
(1)先根据题意用含x的式子表示出y,再列不等式可得答案;
(2)根据甲、乙、丙的进价和售价列出不等式,再解不等式可得答案.
【详解】
解:(1)根据题意,得40x+70y+90(100-x-y)=6800,
解得y=110−x,
∵乙种商品数量不超过甲种商品数量,
∴y≤x,
∴110−x≤x,
解得x≥31.
答:甲种商品至少购进32件;
(2)根据题意,得20x+30y+40(100-x-y)≤3100,
由(1),得y=110−x,
代入不等式,解得x≤40,
答:甲种商品最多购进40件.
【点睛】
本题考查一元一次不等式的实际应用,能够根据题意用含x的式子表示出y是解题关键.
5、<x<8.
【解析】
【分析】
先分别解出两个不等式,再求出公共解即可.
【详解】
解:
解不等式①,得x<8.
解不等式②,得x>.
∴等式组的解集是<x<8,
不等式的解集在数轴上表示如图:
.
【点睛】
本题考查一元一次不等式组的解法,求两个不等式的公共解可以借助数轴求公共部分,也可借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”求公共部分.
数学七年级下册第八章 因式分解综合与测试综合训练题: 这是一份数学七年级下册第八章 因式分解综合与测试综合训练题,共15页。试卷主要包含了下列因式分解正确的是,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
初中北京课改版第八章 因式分解综合与测试同步达标检测题: 这是一份初中北京课改版第八章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列各因式分解正确的是,下列各式从左至右是因式分解的是等内容,欢迎下载使用。
初中北京课改版第四章 一元一次不等式和一元一次不等式组综合与测试同步训练题: 这是一份初中北京课改版第四章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共22页。试卷主要包含了如图,数轴上表示的解集是,已知,为实数,下列说法等内容,欢迎下载使用。